Skip to main content

Choice of Minimally Invasive Approaches: A Review of Unique Risks and Complications

  • Chapter
  • First Online:
Book cover Minimally Invasive Spine Surgery

Abstract

The goal of minimally invasive spine surgery is to obtain outcomes equivalent or superior to that of open procedures through a less morbid approach that features minimal disruption to the patient’s native anatomy. Tubular retractor systems and microscopes have become staples in the armamentarium of the minimally invasive spine surgeon and, as with any technological innovation, come with their own set of advantages and disadvantages.

Working through a smaller surgical footprint makes mastery of the local anatomy of paramount importance. Many of the anatomical structures that surgeons rely on for reference during open approaches are not visible during minimally invasive approaches and can lead to surgeon disorientation. It is crucial that surgeons develop the ability to convert two-dimensional microscopic images to a three-dimensional representation of the surgical field.

Minimally invasive spine surgeons have to adjust to the changes in control and tactile feedback afforded by the longer instruments required to work through narrow tubular retractors. Complications that occur during the approach, injury to the dura or vascular structures, for example, can be more difficult to manage within the confines of a minimally invasive approach.

Minimally invasive surgeries (MIS) are technically demanding procedures that have a substantial but surmountable learning curve. The onus is on the minimally invasive spinal surgeon to develop a clear understanding of the complications associated with the various minimally invasive approaches and develop the ability to mitigate the risk of complications and manage them if they do occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine (Phila Pa 1976). 2007;32:537–43.

    Article  Google Scholar 

  2. Wong AP, Smith ZA, Stadler JA 3rd, Hu XY, Yan JZ, Li XF, Lee JH, Khoo LT. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 2014;25:279–304.

    Article  PubMed  Google Scholar 

  3. Joseph JR, Smith BW, La Marca F, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39:E4.

    Article  PubMed  Google Scholar 

  4. Cheung JP, Luk KD. Complications of anterior and posterior cervical spine surgery. Asian Spine J. 2016;10:385–400.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jung A, Schramm J. How to reduce recurrent laryngeal nerve palsy in anterior cervical spine surgery: a prospective observational study. Neurosurgery. 2010;67:10–5.

    Article  PubMed  Google Scholar 

  6. Tan TP, Govindarajulu AP, Massicotte EM, Venkatraghavan L. Vocal cord palsy after anterior cervical spine surgery: a qualitative systematic review. Spine J. 2014;14:1332–42.

    Article  PubMed  Google Scholar 

  7. Yao N, Wang C, Wang W, Wang L. Full-endoscopic technique for anterior cervical discectomy and interbody fusion: 5-year follow-up results of 67 cases. Eur Spine J. 2011;20:899–904.

    Article  PubMed  Google Scholar 

  8. Pollard ME, Little PW. Changes in carotid artery blood flow during anterior cervical spine surgery. Spine (Phila Pa 1976). 2002;27:152–5.

    Article  Google Scholar 

  9. Kotil K, Bilge T. Prospective study of anterior cervical microforaminotomy for cervical radiculopathy. J Clin Neurosci. 2008;15:749–56.

    Article  PubMed  Google Scholar 

  10. Jho HD. Microsurgical anterior cervical foraminotomy for radiculopathy: a new approach to cervical disc herniation. J Neurosurg. 1996;84:155–60.

    Article  CAS  PubMed  Google Scholar 

  11. Saringer W, Nöbauer I, Reddy M, Tschabitscher M, Horaczek A. Microsurgical anterior cervical foraminotomy (uncoforaminotomy) for unilateral radiculopathy: clinical results of a new technique. Acta Neurochir. 2002;144:685–94.

    Article  CAS  PubMed  Google Scholar 

  12. Balasubramanian C, Price R, Brydon H. Anterior cervical microforaminotomy for cervical radiculopathy—results and review. Minim Invasive Neurosurg. 2008;51:258–62.

    Article  CAS  PubMed  Google Scholar 

  13. Pechlivanis I, Brenke C, Scholz M, Engelhardt M, Harders A, Schmieder K. Treatment of degenerative cervical disc disease with uncoforaminotomy—intermediate clinical outcome. Minim Invasive Neurosurg. 2008;51:211–7.

    Article  CAS  PubMed  Google Scholar 

  14. Park YK, Moon HJ, Kwon TH, Kim JH. Long-term outcomes following anterior foraminotomy for one- or two-level cervical radiculopathy. European Spine J. 2013;22:1489–96.

    Article  Google Scholar 

  15. Kim MH. Clinical and radiological long-term outcomes of anterior microforaminotomy for cervical degenerative disease. Spine (Phila Pa 1976). 2013;38:1812–9.

    Article  Google Scholar 

  16. Hacker RJ, Miller CG. Failed anterior cervical foraminotomy. J Neurosurg. 2003;98:126–30.

    PubMed  Google Scholar 

  17. Ahn Y, Lee SH, Lee SC, Shin SW, Chung SE. Factors predicting excellent outcome of percutaneous cervical discectomy: analysis of 111 consecutive cases. Neuroradiology. 2004;46:378–84.

    Article  CAS  PubMed  Google Scholar 

  18. Ahn Y, Lee SH, Shin SW. Percutaneous endoscopic cervical discectomy: clinical outcome and radiographic changes. Photomed Laser Surg. 2005;23:362–8.

    Article  PubMed  Google Scholar 

  19. Tzaan WC. Anterior percutaneous endoscopic cervical discectomy for cervical intervertebral disc herniation. J Spinal Disord Tech. 2011;24:421–31.

    Article  PubMed  Google Scholar 

  20. Lee JH, Lee SH. Clinical and radiographic changes after percutaneous endoscopic cervical discectomy: a long-term follow-up. Photomed Laser Surg. 2014;32:663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Skovrlj B, Qureshi SA. Minimally invasive cervical spine surgery. J Neurosurg Sci. 2017;61:325–34.

    PubMed  Google Scholar 

  22. Celestre PC, Pazmiño PR, Mikhael MM, Wolf CF, Feldman LA, Lauryssen C, Wang JC. Minimally invasive approaches to the cervical spine. Orthop Clin N Am. 2012;43:137–47.

    Article  Google Scholar 

  23. Clark JG, Abdullah KG, Steinmetz MP, Benzel EC, Mroz TE. Minimally invasive versus open cervical Foraminotomy: a systematic review. Global Spine J. 2011;1:009–14.

    Article  Google Scholar 

  24. Song Z, Zhang Z, Hao J, Shen J, Zhou N, Xu S, Ni W, Hu Z. Microsurgery or open cervical foraminotomy for cervical radiculopathy? A systematic review. Int Orthop. 2016;40:1335–43.

    Article  PubMed  Google Scholar 

  25. Winder MJ, Thomas KC. Minimally invasive versus open approach for cervical laminoforaminotomy. Can J Neurol Sci. 2011;38:262–7.

    Article  PubMed  Google Scholar 

  26. McAnany SJ, Kim JS, Overley SC, Baird EO, Anderson PA, Qureshi SA. A meta-analysis of cervical foraminotomy: open versus minimally-invasive techniques. Spine J. 2015;15:849–56.

    Article  PubMed  Google Scholar 

  27. Terai H, Suzuki A, Toyoda H, Yasuda H, Kaneda K, Katsutani H, Nakamura H. Tandem keyhole foraminotomy in the treatment of cervical radiculopathy: retrospective review of 35 cases. J Orthop Surg Res. 2014;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fessler RG, Khoo LT. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002;51:S37–45.

    PubMed  Google Scholar 

  29. Adamson TE. Microendoscopic posterior cervical laminoforaminotomy for unilateral radiculopathy: results of a new technique in 100 cases. J Neurosurg. 2001;95:51–7.

    Article  CAS  PubMed  Google Scholar 

  30. Skovrlj B, Gologorsky Y, Haque R, Fessler RG, Qureshi SA. Complications, outcomes, and need for fusion after minimally invasive posterior cervical foraminotomy and microdiscectomy. Spine J. 2014;14:2405–11.

    Article  PubMed  Google Scholar 

  31. Kim CH, Kim KT, Chung CK, Park SB, Yang SH, Kim SM, Sung JK. Minimally invasive cervical foraminotomy and diskectomy for laterally located soft disk herniation. Eur Spine J. 2015;24:3005–12.

    Article  PubMed  Google Scholar 

  32. Boehm H, Greiner-Perth R, El-Saghir H, Allam Y. A new minimally invasive posterior approach for the treatment of cervical radiculopathy and myelopathy: surgical technique and preliminary results. European Spine J. 2003;12:268–73.

    Article  CAS  Google Scholar 

  33. Hur JW, Kim JS, Shin MH, Ryu KS. Minimally invasive posterior cervical decompression using tubular retractor: the technical note and early clinical outcome. Surg Neurol Int. 2014;5:34.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eicker SO, Steiger HJ, El-Kathib M. A transtubular microsurgical approach to treat lateral cervical disc herniation. World Neurosurg. 2016;88:503–9.

    Article  PubMed  Google Scholar 

  35. Oh HS, Hwang BW, Park SJ, Hsieh CS, Lee SH. Percutaneous endoscopic cervical discectomy (PECD): an analysis of outcome, causes of reoperation. World Neurosurg. 2017;102:583–92.

    Article  PubMed  Google Scholar 

  36. Wu Z, Wu H, Wang H, Wu C, Xu W, Zhang L, Fan H, Cai J, Ma J. A rare complication after minimally invasive posterior cervical laminoforaminotomy. J Musculoskelet Neuronal Interact. 2016;16:172–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bydon M, Macki M, Kaloostian P, Sciubba DM, Wolinsky JP, Gokaslan ZL, Belzberg AJ, Bydon A, Witham TF. Incidence and prognostic factors of C5 palsy. Neurosurgery. 2014;74:595–605.

    Article  PubMed  Google Scholar 

  38. Wang MY, Levi AD. Minimally invasive lateral mass screw fixation in the cervical spine: initial clinical experience with long-term follow-up. Neurosurgery. 2006;58:907–12.

    Article  PubMed  Google Scholar 

  39. Mikhael MM, Celestre PC, Wolf CF, Mroz TE, Wang JC. Minimally invasive cervical spine foraminotomy and lateral mass screw placement. Spine (Phila Pa 1976). 2012;37:E318–22.

    Article  Google Scholar 

  40. Kim MK, Cho SM, You SH, Kim IB, Kwak DS. Hybrid technique for cervical pedicle screw placement. Spine (Phila Pa 1976). 2015;40:1181–6.

    Article  Google Scholar 

  41. Kantelhardt SR, Keric N, Conrad J, Archavlis E, Giese A. Minimally invasive instrumentation of uncomplicated cervical fractures. Eur Spine J. 2016;25:127–33.

    Article  PubMed  Google Scholar 

  42. Arts MP, Bartels RH. Anterior or posterior approach of thoracic disc herniation? A comparative cohort of mini-transthoracic versus transpedicular discectomies. Spine J. 2014;14:1654–62.

    Article  PubMed  Google Scholar 

  43. Yoshihara H. Surgical treatment for thoracic disc herniation. Spine (Phila Pa 1976). 2014;39:E406–12.

    Article  Google Scholar 

  44. Angevin PD, McCormick PC. Retropleural thoracotomy. Technical note. Neurosurg Focus. 2001;10:ecp1.

    Article  CAS  PubMed  Google Scholar 

  45. Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine (Phila Pa 1976). 1995;20:1592–9.

    Article  CAS  Google Scholar 

  46. Fessler RG, Sturgill M. Review: complications of surgery for thoracic disc disease. Surg Neurol. 1998;49:609–18.

    Article  CAS  PubMed  Google Scholar 

  47. Krauss WE. Vascular anatomy of the spinal cord. Neurosurg Clin N Am. 1999;10:9–15.

    Article  CAS  PubMed  Google Scholar 

  48. Burke TG, Caputy AJ. Treatment of thoracic disc herniation: evolution toward the minimally invasive thoracoscopic technique. Neurosurg Focus. 2000;9:e9.

    Article  CAS  PubMed  Google Scholar 

  49. Eichholz KM, O’Toole JE, Fessler RG. Thoracic microendoscopic discectomy. Neurosurg Clin N Am. 2006;17:441–6.

    Article  PubMed  Google Scholar 

  50. Deviren V, Kuelling FA, Poulter G, Pekmezci M. Minimal invasive anterolateral transthoracic transpleural approach. J Spinal Disord Tech. 2011;24:E40–8.

    Article  PubMed  Google Scholar 

  51. McCormick PC. Retropleural approach to the thoracic and thoracolumbar spine. Neurosurgery. 1995;37:908–14.

    Article  CAS  PubMed  Google Scholar 

  52. Dakwar E, Ahmadian A, Uribe JS. The anatomical relationship of the diaphragm to the thoracolumbar junction during the minimally invasive lateral extracoelomic (retropleural/retroperitoneal) approach. J Neurosurg: Spine. 2012;16:359–64.

    Google Scholar 

  53. Kasliwal MK, Deutsch H. Minimally invasive Retropleural approach for central thoracic disc herniation. Minim Invasive Neurosurg. 2011;54:167–71.

    Article  CAS  PubMed  Google Scholar 

  54. Park MS, Deukmedjian AR, Uribe JS. Minimally invasive anterolateral corpectomy for spinal tumors. Neurosurg Clin N Am. 2014;25:317–25.

    Article  PubMed  Google Scholar 

  55. Nacar OA, Ulu MO, Pekmezci M, Deviren V. Surgical treatment of thoracic disc disease via minimally invasive lateral transthoracic trans/retropleural approach: analysis of 33 patients. Neurosurg Rev. 2013;36:455–65.

    Article  PubMed  Google Scholar 

  56. Uribe JS, Dakwar E, Cardona RF, Vale FL. Minimally invasive lateral retropleural thoracolumbar approach: cadaveric feasibility study and report of 4 clinical cases. Neurosurgery. 2011;68:32–9.

    PubMed  Google Scholar 

  57. Uribe JS, Smith WD, Pimenta L, Härtl R, Dakwar E, Modhia UM, Pollock GA, Nagineni V, Smith R, Christian G, Oliveira L, Marchi L, Deviren V. Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine. 2012;16:264–79.

    Article  PubMed  Google Scholar 

  58. Moran C, Ali Z, McEvoy L, Bolger C. Mini–open retropleural transthoracic approach for the treatment of giant thoracic disc herniation. Spine (Phila Pa 1976). 2012;37:E1079–84.

    Article  Google Scholar 

  59. Binning MJ, Schmidt MH. Percutaneous placement of radiopaque markers at the pedicle of interest for preoperative localization of thoracic spine level. Spine (Phila Pa 1976). 2010;35:1821–5.

    Article  Google Scholar 

  60. Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56:736–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rosenthal D, Dickman CA. Thoracoscopic microsurgical excision of herniated thoracic discs. J Neurosurg. 1998;89:224–35.

    Article  CAS  PubMed  Google Scholar 

  62. Lall RR, Smith ZA, Wong AP, Miller D, Fessler RG. Minimally invasive thoracic corpectomy: surgical strategies for malignancy, trauma, and complex spinal pathologies. Minim Invasive Surg. 2012;2012:213791.

    PubMed  PubMed Central  Google Scholar 

  63. Elhadi AM, Zehri AH, Zaidi HA, Almefty KK, Preul MC, Theodore N, Dickman CA. Surgical efficacy of minimally invasive thoracic discectomy. J Clin Neurosci. 2015;22:1708–13.

    Article  PubMed  Google Scholar 

  64. Cheung KM, Al Ghazi S. Approach-related complications of open versus thoracoscopic anterior exposures of the thoracic spine. J Orthop Surg (Hong Kong). 2008;16:343–7.

    Article  CAS  Google Scholar 

  65. Lee CY, Wu MH, Li YY, Cheng CC, Lee CY, Huang TJ. Video-assisted thoracoscopic surgery and minimal access spinal surgery compared in anterior thoracic or thoracolumbar junctional spinal reconstruction: a case-control study and review of the literature. Biomed Res Int. 2016;2016:1–9.

    Google Scholar 

  66. Molina CA, Gokaslan ZL, Sciubba DM. A systematic review of the current role of minimally invasive spine surgery in the management of metastatic spine disease. Int J Surg Oncol. 2011;2011:1–9.

    Article  Google Scholar 

  67. Bransford RJ, Zhang F, Bellabarba C, Lee MJ. Treating thoracic-disc herniations: do we always have to go anteriorly? Evid Based Spine Care J. 2010;1:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lifshutz J, Lidar Z, Maiman D. Evolution of the lateral extracavitary approach to the spine. Neurosurg Focus. 2004;16:E12.

    PubMed  Google Scholar 

  69. Smith ZA, Li Z, Chen NF, Raphael D, Khoo LT. Minimally invasive lateral extracavitary corpectomy: cadaveric evaluation model and report of 3 clinical cases. J Neurosurg Spine. 2012;16:463–70.

    Article  PubMed  Google Scholar 

  70. Jho HD. Endoscopic microscopic transpedicular thoracic discectomy. J Neurosurg. 1997;87:125–9.

    Article  CAS  PubMed  Google Scholar 

  71. Musacchio M, Patel N, Bagan B, Deutsch H, Vaccaro AR, Ratliff J. Minimally invasive thoracolumbar costotransversectomy and corpectomy via a dual-tube technique: evaluation in a cadaver model. Surg Technol Int. 2007;16:221–5.

    PubMed  Google Scholar 

  72. Deutsch H, Boco T, Lobel J. Minimally invasive transpedicular vertebrectomy for metastatic disease to the thoracic spine. J Spinal Disord Tech. 2008;21:101–5.

    Article  PubMed  Google Scholar 

  73. Chou D, Lu DC. Mini-open transpedicular corpectomies with expandable cage reconstruction. J Neurosurg Spine. 2011;14:71–7.

    Article  PubMed  Google Scholar 

  74. Chi JH, Dhall SS, Kanter AS, Mummaneni PV. The Mini-Open transpedicular thoracic discectomy: surgical technique and assessment. Neurosurg Focus. 2008;25:E5.

    Article  PubMed  Google Scholar 

  75. Regev GJ, Salame K, Behrbalk E, Keynan O, Lidar Z. Minimally invasive transforaminal, thoracic microscopic discectomy: technical report and preliminary results and complications. Spine J. 2012;12:570–6.

    Article  PubMed  Google Scholar 

  76. Choi KY, Eun SS, Lee SH, Lee HY. Percutaneous endoscopic thoracic discectomy; transforaminal approach. Minim Invasive Neurosurg. 2010;53:25–8.

    Article  CAS  PubMed  Google Scholar 

  77. Stillerman CB, Chen TC, Day JD, Couldwell WT, Weiss MH. The transfacet pedicle-sparing approach for thoracic disc removal: cadaveric morphometric analysis and preliminary clinical experience. J Neurosurg. 1995;83:971–6.

    Article  CAS  PubMed  Google Scholar 

  78. Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg. 1997;4:301–7.

    Google Scholar 

  79. Dasenbrock HH, Juraschek SP, Schultz LR, Witham TF, Sciubba DM, Wolinsky JP, Gokaslan ZL, Bydon A. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine. 2012;16:452–62.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shriver MF, Xie JJ, Tye EY, Rosenbaum BP, Kshettry VR, Benzel EC, Mroz TE. Lumbar microdiscectomy complication rates: a systematic review and meta-analysis. Neurosurg Focus. 2015;39:E6.

    Article  PubMed  Google Scholar 

  81. Hussain NS, Perez-Cruet MJ. Complication management with minimally invasive spine procedures. Neurosurg Focus. 2011;31:E2.

    Article  PubMed  Google Scholar 

  82. Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27:432–8.

    Article  Google Scholar 

  83. Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10:154–68.

    Article  CAS  PubMed  Google Scholar 

  84. Briggs H, Milligan P. Chip fusion of the low back following exploration of the spinal canal. J Bone Joint Surg Am. 1944;26:125–30.

    Google Scholar 

  85. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1:2–18.

    PubMed  PubMed Central  Google Scholar 

  86. Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord. 2014;15:367.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wu RH, Fraser JF, Hartl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976). 2010;35:2273–81.

    Article  Google Scholar 

  88. Adogwa O, Carr K, Thompson P, Hoang K, Darlington T, Perez E, Fatemi P, Gottfried O, Cheng J, Isaacs RE. A prospective, multi-institutional comparative effectiveness study of lumbar spine surgery in morbidly obese patients: does minimally invasive transforaminal lumbar interbody fusion result in superior outcomes? World Neurosurg. 2015;83:860–6.

    Article  PubMed  Google Scholar 

  89. Wong AP, Smith ZA, Nixon AT, Lawton CD, Dahdaleh NS, Wong RH, Auffinger B, Lam S, Song JK, Liu JC, Koski TR, Fessler RG. Intraoperative and perioperative complications in minimally invasive transforaminal lumbar interbody fusion: a review of 513 patients. J Neurosurg Spine. 2015;22:487–95.

    Article  PubMed  Google Scholar 

  90. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res. 2014;472:1727–37.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.

    Article  PubMed  Google Scholar 

  92. Tubbs RI, Gabel B, Jeyamohan S, Moisi M, Chapman JR, Hanscom RD, Loukas M, Oskouian RJ, Tubbs RS. Relationship of the lumbar plexus branches to the lumbar spine: anatomical study with application to lateral approaches. Spine J. 2017;17:1012.

    Article  PubMed  Google Scholar 

  93. Smith WD, Youssef JA, Christian G, Serrano S, Hyde JA. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5–6. J Spinal Disord Tech. 2012;25:285–91.

    Article  PubMed  Google Scholar 

  94. Cheng I, Briseno MR, Arrigo RT, Bains N, Ravi S, Tran A. Outcomes of two different techniques using the lateral approach for lumbar interbody arthrodesis. Global Spine J. 2015;5:308–14.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976). 2010;35:S322–30.

    Article  Google Scholar 

  96. Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus. 2011;31:E4.

    Article  PubMed  Google Scholar 

  97. Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14:31–7.

    Article  PubMed  Google Scholar 

  98. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9.

    Article  CAS  Google Scholar 

  99. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, Hasue F, Yamagata M, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976). 2017;42:55–62.

    Article  Google Scholar 

  101. Fujibayashi S, Kawakami N, Asazuma T, Ito M, Mizutani J, Nagashima H, Nakamura M, Sairyo K, Takemasa R, Iwasaki M. Complications associated with lateral interbody fusion: nationwide survey of 2998 cases during the first two years of its use in Japan. Spine (Phila Pa 1976). 2017;42(19):1478–84.

    Article  Google Scholar 

  102. Li JX, Phan K, Mobbs R. Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg. 2017;98:113–23.

    Article  CAS  PubMed  Google Scholar 

  103. Kim JS, Choi WS, Sung JH. 314 minimally invasive oblique lateral interbody fusion for L4–5: clinical outcomes and perioperative complications. Neurosurgery. 2016;63(Suppl 1):190–1.

    Article  Google Scholar 

  104. Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17:545–53.

    Article  PubMed  Google Scholar 

  105. Whang PG, Sasso RC, Patel VV, Ali RM, Fischgrund JS. Comparison of axial and anterior interbody fusions of the L5-S1 segment: a retrospective cohort analysis. J Spinal Disord Tech. 2013;26:437–43.

    Article  PubMed  Google Scholar 

  106. Marotta N, Cosar M, Pimenta L, Khoo LT. A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus. 2006;20:E9.

    Article  PubMed  Google Scholar 

  107. Lindley EM, McCullough MA, Burger EL, Brown CW, Patel VV. Complications of axial lumbar interbody fusion. J Neurosurg Spine. 2011;15:273–9.

    Article  PubMed  Google Scholar 

  108. Gundanna MI, Miller LE, Block JE. Complications with axial presacral lumbar interbody fusion: a 5-year postmarketing surveillance experience. SAS J. 2011;5:90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schroeder GD, Kepler CK, Vaccaro AR. Axial interbody arthrodesis of the L5-S1 segment: a systematic review of the literature. J Neurosurg Spine. 2015;23:314–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lee .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  • 1. Injury to what nerve, most commonly encountered during the anterior cervical approach, can lead to hoarseness if injured ipsilaterally or vocal cord paralysis if injured bilaterally?

  • 2. The vertebral artery is most often located in what position in relation to the C7 transverse process?

  • 3. Thigh weakness is most commonly reported after which minimally invasive approach?

Answers

  1. 1.

    Recurrent laryngeal nerve

  2. 2.

    Anterior

  3. 3.

    Transpsoas approach

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mosenthal, W.P., Divi, S.N., Dickherber, J.L., Lee, M.J. (2019). Choice of Minimally Invasive Approaches: A Review of Unique Risks and Complications. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics