Skip to main content

Microorganisms Aiding Existence and Efficiency of Plants in Saline Environment: What We Know and What to Expect

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Salinity poses a major threat to agriculture and hence to food production globally. Though a number of plants are halophytes, surviving in saline environment and, in some cases, requiring a saline soil for growth, none of the cultivated crops are halophytes. Microorganisms, being ubiquitous, are present everywhere, and a large number of salt-tolerant microbes have been found to be associated with halophytes. Many of them are involved in providing tolerance to the plants against salt stress through various mechanisms such as adjusting osmotic balance, ion homeostasis, enhancing antioxidant machinery for scavenging the toxic reactive oxygen species and production of hormones, etc. The use of beneficial microorganisms which have the potential for plant growth promotion as well as salt stress alleviation is gaining momentum. The most commonly used are the plant growth-promoting bacteria of genus Bacillus, as well as some arbuscular mycorrhizal fungi, particularly belonging to the genus Glomus. This approach would provide a cost-efficient, eco-friendly means of salt stress alleviation linked with plant growth promotion, which in turn could lead to sustainable agriculture under changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44:1341–1348

    Article  PubMed  Google Scholar 

  • Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Aslam F, Ali B (2018) Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) Forssk. improved growth of maize under salinity stress. Agronomy 8:131. https://doi.org/10.3390/agronomy8080131

    Article  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Sting Weng R, Richie Gan R, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead sea. Genome Res 14:2221–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2012) Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol Res 167:95–102

    Article  PubMed  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    Article  CAS  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Bibi F, Strobel GA, Naseer MI, Yasir M, Al-Ghamdi AAK, Azhar EI (2018) Microbial flora associated with the halophyte – Salsola imbricate and its biotechnical potential. Front Microbiol 9:65. https://doi.org/10.3389/fmicb2018.00065

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon “Haloquadratum walsbyi”: life at the limits of water activity. BMC Genet 7:169

    Article  CAS  Google Scholar 

  • Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LM, Correia PH, Martins-Loucao A (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Pradhan B (2012) Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz J Plant Physiol 24:117–130

    Article  CAS  Google Scholar 

  • Chakraborty U, Pradhan B (2013) Drought stress-induced oxidative stress and antioxidative responses in four wheat (Triticum aestivum L.) varieties. Arch Agron Soil Sci 58:617–630

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty BN (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Rec Res Sci Technol 3:61–70

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yang Z, Huang B (2016) Functional identification and characterization of genes cloned from halophyte seashore Paspalum conferring salinity and cadmium tolerance. Front Plant Sci 7:102

    PubMed  PubMed Central  Google Scholar 

  • Cheng T, Chen J, Zhang J, Shi S, Zhou Y, Lu L, Wang P, Jiang Z, Yang J, Zhang S, Shi J (2015) Physiological and proteomic analyses of leaves from the halophyte Tangut nitraria reveals diverse response pathways critical for high salinity tolerance. Front Plant Sci 6:30

    PubMed  PubMed Central  Google Scholar 

  • Cherian S, Reddy MP (1999) Salt tolerance in the halophyte Suaeda nudiflora Moq.: effect of NaCl on growth, ion accumulation and oxidative enzymes. Indian J Plant Physiol 5:32–37

    Google Scholar 

  • Chung EJ, Park JE, Jeon CO, Chung YR (2015) Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 65:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • de Araujo SAM, Silveira JAG, Almeida TD, Rocha IMA, Morais DL, Viegas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. J Agric Environ Eng 10:848–854

    Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect of NaCl and growth regulators on germination of Atriplex halimus L. Cahiers Agric 10:135–138

    Google Scholar 

  • Del Vecchio S, Prisco I, Acosta AT, Starrisci A (2015) Changes in plant species composition of coastal dune habitats over a 20 year period. AoB Plants 7:plv018. https://doi.org/10.1093/aobpla/plv018

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct Plant Biol 40:897–912

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. Int J Phytoremediation 18:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y (2015) High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol 15:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010a) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CLL, Krisnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010b) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Frosini S, Lardicci C, Balestri E (2012) Global change and response of coastal dune plants to the combined effects of increased sand accretion (burial) and nutrient availability. PLoS One 7:e47561. https://doi.org/10.1371/journal.pone.0047561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2017) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeon pea). J Plant Gr Reg 27:115–124

    Article  CAS  Google Scholar 

  • Gharat SA, Parmar S, Tambat S, Vasudevan M, Shaw BP (2016) Transcriptome analysis of the response to NaCl in Suaeda maritima provides an insight into salt tolerance mechanisms in halophytes. PLoS One 11(9):e0163485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESDbox helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Glenn EP, Brown JJ (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Grant WD, Larsen H (1989) Group III. Extremely halophilic archaeobacteria order Halobacteriales ord. nov. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2216–2233

    Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 701596, 18 p. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Bio Med Res Intern 6284547, 10 p. https://doi.org/10.1155/2016/6284547

    Article  CAS  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Sa-Youl Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27:1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Harisnaut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113

    Article  Google Scholar 

  • He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mol Sci 19:469

    Article  PubMed Central  CAS  Google Scholar 

  • Hilderbrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  Google Scholar 

  • Ho I (1987) Vesicular-arbuscular mycorrhizae of halophytic grasses in the Alvord desert of Oregon. Northwest Sci 61:148–151

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  PubMed  PubMed Central  Google Scholar 

  • Indira K, Srinivasan M (2017) Diversity and ecological distribution of endophytic fungi associated with salt marsh plants. Ind J Geo Mar Sci 46:612–623

    Google Scholar 

  • Jha B, Gontia I, Hartmann A (2011) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria x ananassa). Hort Sci 48:563–567

    Article  CAS  Google Scholar 

  • Kaur A, Devi SR, Vyas P (2018) Stress-tolerant antagonistic plant growth-promoting rhizobacteria from Zea mays. J Plant Prot Res 58:115–123

    CAS  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kunte HJ (2006) Osmoregulation in bacteria: Compatible solute accumulation and osmosensing. Environ Chem 3:94–99

    Article  CAS  Google Scholar 

  • Kunte HJ, Trüper HG, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. Springer, Berlin

    Google Scholar 

  • Lai M-C, Hong T-Y, Gunsalus RP (2000) Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J Bacteriol 182:5020–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    Article  CAS  Google Scholar 

  • Li Y, Kong Y, Teng D, Zhang X, He X, Zhang Y, Lv G (2018) Rhizobacterial communities of five co-occurring desert halophytes. Peer J 6:e5508

    Article  PubMed  PubMed Central  Google Scholar 

  • Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33:813–819

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hao H, Lu X, Zhao X, Wang Y, Zhang Y, Xie Z, Wang R (2017a) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep 7:10795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Wang Y, Tang M (2017b) Arbuscular mycorrhizal fungi diversity associated with two halophytes Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia, China. Arch Agron Soil Sci 63:796–806

    Article  Google Scholar 

  • Lv S, Jiang P, Chen X, Fan P, Wang X, Li Y (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Biochem 51:47–52

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Mapelli F, Rolli E, Mosqueira_santillan MJ, Fusi M, Bariselli P, Reddy M, Cherif A, Tsiamis G, Borin S, Daffonchio D (2016) Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol 7:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Muthezhilan R, Sindhuja BS, Hussain AJ, Jayaprakashvel M (2012) Efficiency of plant growth promoting rhizobacteria isolated from sand dunes of Chennai coastal area. Pak J Biol Sci 15:795–799

    Article  CAS  PubMed  Google Scholar 

  • Naidoo G, Rughunanan R (1990) Salt tolerance in the succulent, coastal halophyte, Sarcocornia natalensis. J Exp Bot 41:497–502

    Article  CAS  Google Scholar 

  • Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gomez S, Camacho M, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol 19:249–256

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, AL-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci 7:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Zhang Y-J, Yuan B, Xu P-Y, Xing K, Wang J, Jiang J-H (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766

    Article  CAS  Google Scholar 

  • Qin S, Feng W-W, Zhang Y-J, Wang T-T, Xiong Y-W, Xing K (2018) Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84:e01533–e01518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Railsback LB, Ackerly SC, Anderson TF, Cisne JL (1990) Paleontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature 343:156–159

    Article  CAS  Google Scholar 

  • Roy S, Chakraborty U (2018) Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice. Protoplasma 255:175–191

    Article  CAS  PubMed  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  PubMed  Google Scholar 

  • Sannazzaro AI, Echeverria M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Saum SH, Muller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert S, Neubert A, Schierholt A, Sumer A, Zorb C (2009) Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pretreated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    PubMed  PubMed Central  Google Scholar 

  • Shi-Ying Z, Cong F, Yong-Xia W, Yun-Sheng X, Wei X, Xiao-Long C (2018) Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Can J Microbiol 64:968–978. [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Jha PN (2016a) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake. Symbiosis 69:101–111. https://doi.org/10.1007/s13199-016-0387-x

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016b) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11(6):e0155026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szymanska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicza K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiol Res 192:37–51

    Article  CAS  PubMed  Google Scholar 

  • Tenchov B, Vescio EM, Sprott GD, Zeidel ML, Mathai JC (2006) Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem 281:10016–10023

    Article  CAS  PubMed  Google Scholar 

  • Tian XY, Zhang CS (2017) Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Front Microbiol 8:2288

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127

    CAS  PubMed  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  • Ungar I (1991) Ecophysiology of vascular halophytes. CRC, Boca Raton

    Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293. https://doi.org/10.1111/plb.12173

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated amelioration of crops under salt stress. In: Choudhary DK, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 205–226. https://doi.org/10.1007/978-981-10-2854-0_10

    Chapter  Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Wohlfarth A, Severin J, Galinski EA (1990) The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J Gen Microbiol 136:705–712

    Article  CAS  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen S-E (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbe J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467. https://doi.org/10.1038/srep32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerrouk IZ, Benchabane KL, Yokawa K, Ludwig-Muller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119. https://doi.org/10.1016/j.jplph.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, U., Roy, S., Chakraborty, B. (2019). Microorganisms Aiding Existence and Efficiency of Plants in Saline Environment: What We Know and What to Expect. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_9

Download citation

Publish with us

Policies and ethics