Skip to main content

Arbuscular Mycorrhizal Fungi Alleviate Soil Salinity Stress in Arid and Semiarid Areas

  • Chapter
  • First Online:
Book cover Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Soil salinization is an increasingly important problem in many parts of the world, particularly in the arid and semiarid areas. Soil salinity affects plant growth adversely, by disrupting their physiological mechanisms due to excessive Na+ and Cl ions toxicity toward cells. The toxic effects include disruption of enzyme structure and other macromolecules, disruption of photosynthetic efficiency, gas exchange, membrane organization, and water status. Salinity may directly or indirectly inhibit plant cell division, development, and productivity. To overcome the detrimental effects and to improve plant tolerance to stresses, particularly salt stress, plants adopt a wide variety of strategies including symbiotic association with soil fungi such as the arbuscular mycorrhizal fungi (AMF). The use of arbuscular mycorrhizal fungi proved to be an interesting way for the management of native flora and restoration of natural habitats with minimal chemical inputs. Unfortunately, the knowledge about restoration of salt-affected ecosystems using AMF biofertilizer is limited. This chapter aims to review the impact of salinity stress on plants and on AMF life cycle and physiology and to describe the effect of AMF biofertilizers on plant development underlying physiological, biochemical, and molecular plant mechanisms within the context of salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Aliasgharzadeh N, Rastin SN, Towfighi H et al (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9:802–810

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño AM et al (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Vanza M (2017) Microbial approach for bioremediation of saline and sodic soils. In: Singh (ed) Bioremediation of salt affected soils: an Indian perspective. Springer, Berlin, pp 87–100

    Chapter  Google Scholar 

  • Bacera A, Bartoloni N, Cofré N, Soteras F, Cabello M (2014) Arbuscular mycorrhizal fungi in saline soils: vertical distribution at different soil depth. Braz J Microbiol 45:585–594

    Article  Google Scholar 

  • Badda N, Aggarwal A, Kadian N, Sharma N (2014) Influence of arbuscular mycorrhizal fungi and different salinity levels on growth enhancement and nutrient uptake of Gossypium arboreum L. Kavaka 43:14–21

    Google Scholar 

  • Barin M, Alisgharzad N, Olsson PA, Rasouli-Sadaghiani M (2013) Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Urmia northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia 56:225–232

    Article  CAS  Google Scholar 

  • Basu S, Rabara RC, Negiet S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45

    Article  Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Bencherif K, Boutekrabta A, Fontaine J, Laruelle F, Dalpé Y, Lounès-Hadj Sahraoui A (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494

    Article  CAS  PubMed  Google Scholar 

  • Benkhaled L, Gomez AM, Ouarraqi E, Oihabi A (2007) Réponses physiologiques et biochimiques du tréfle (Trifolium alexandrinun L) à la double association Mycorhizes-Rhizobium sous une contrainte saline. Agronomie 23:571–580

    Article  Google Scholar 

  • Bowen GD (1987) The biology and physiology of infection and its development. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 27–57

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G et al (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress plants-mechanisms and adaptations. InTech, Rijeka. https://doi.org/10.5772/22331

    Chapter  Google Scholar 

  • Carvalho LM, Correia PM, Caçador I, Martins-Louçao MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143

    Article  Google Scholar 

  • Chin K, DeFalco TA, Moeder W, Yoshioka K (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol 163:611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diagne N, Baudin E, Svistoonoff S, Ouattara C, Diouf D, Kan A, Ndiaye C, Noba K, Bogusz D, Franche C, Duponnois R (2018) Effect of native and allochthonous arbuscular mycorrhizal fungi on Casuarina equisetifolia growth and its root bacterial community. Arid Land Res Manag. https://doi.org/10.1080/15324982.2017.1406413

    Article  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd-Allah E (2017) Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24:1601–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElHindi KM, Sharaf El-Din A, ElGorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca MFJM et al (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86

    Article  PubMed  Google Scholar 

  • Fan L, Dalpé Y, Fang C, Dubé C, Khanizadeh S (2011) Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress. Botany 89:397–403

    Article  Google Scholar 

  • Feng G, Zhang FS, Xl L et al (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (2013) La symbiose mycorhizienne: Une association entre les plantes et les champignons. Collection Synthèse. QUAE editions, p 280

    Google Scholar 

  • Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecology 21:57–67

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24:79–94

    Article  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmed P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signaling, omics and adaptations. Springer, New York, pp 301–354

    Chapter  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqaraw AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under Salt Stress. Front Microbiol 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R et al (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Juniper S, Abbott L (1993) VAM and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Karaarslan E, Uyanoz R (2011) Occurrence of arbuscular mycorrhizal fungi in some native plants grown on saline soils around the lake Tuz in Turkey and its relations with some physical and chemical properties of soil. Sci Res Essays 6:4238–4245

    CAS  Google Scholar 

  • Khalloufi M, Andújar CM, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144. https://doi.org/10.1016/j.jplph.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the great effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to sever salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Krishnamoorthy R, Selvakumar G et al (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol 58:533–540

    Article  CAS  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticultirae 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Mathur N, Singh J, Bohra S et al (2007) Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar desert. Int J Soil Sci 2:119–127

    Article  Google Scholar 

  • Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698. https://doi.org/10.1016/j.pbi.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Bagyarag DJ, Ashwin R (2017) Arbuscular mycorrhizal fungi: Role in alleviating salt stress in crop plants. In: Bagyarag DJ, Jamaluddin (eds) Microbes for plant stress management, vol 1. New India, New Delhi, pp 221–243

    Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E et al (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    Article  CAS  Google Scholar 

  • Péréz-Tienda J, Testillanob PS, Balestrinic R, Fiorillic V, Azcón-Aguilara C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:144–1055

    Article  Google Scholar 

  • Plenchette C (1991) Utilisation des mycorhizes en agriculture et horticulture. In: Strullu DG, Garbaye J, Perrin R, Plenchette C (eds) Les mycorhizes des arbres et des plantes cultivées. Lavoisier, Paris, pp 131–196

    Google Scholar 

  • Plouznikoof K, Declerck S, Calonne-Salmon M (2016) Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In: Vos CMF, Kazan K (eds) Belowground defence strategies in plants, signaling and communication in plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42319-7_1

    Chapter  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:74–84

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruíz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi – a review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R et al (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673

    Article  CAS  PubMed  Google Scholar 

  • Powell JR, Rilling MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol Trans. https://doi.org/10.1111/nph.15119

    Article  PubMed  Google Scholar 

  • Ramoliya PJ, Patel HM, Pandey AN (2004) Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 202:181–193

    Article  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Arp W, Van Diggelen J et al (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:45

    Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sabir P, Ashraf M, Hussain M, Jamil A (2009) Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum Miliaceum L.) accessions. Pak J Bot 41:2957–2964

    CAS  Google Scholar 

  • Sanchez-Castro I, Ferrol N, Barea JM (2012) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. J Arid Environ 80:1–9

    Article  Google Scholar 

  • Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 76–106

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huanga Y (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Rev Can Microbiol 55:879–886

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Zhang FF et al (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M (2009) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314:25–34

    Article  CAS  Google Scholar 

  • Taleisnik EL, Grunberg K (1994) Ion balance in tomato cultivars differing in salt tolerance. Sodium and potassium accumulation and fluxes under moderate salinity. Physiol Plant 92:528–534

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Wang FY, Liu RJ, Lin XJ, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Wu Z, Sawada T, Shiba K, Liu S, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2013) Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev 27:157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Y amaguchishinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta (1)-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. https://doi.org/10.1007/s10725-018-0431-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bencherif, K., Dalpé, Y., Lounès Hadj-Sahraoui, A. (2019). Arbuscular Mycorrhizal Fungi Alleviate Soil Salinity Stress in Arid and Semiarid Areas. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_16

Download citation

Publish with us

Policies and ethics