Skip to main content

Silicon (Si)- and Zinc (Zn)-Solubilizing Microorganisms: Role in Sustainable Agriculture

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Across the world today, loss of the health of the soil is a key constraint causing reduced soil productivity and fertility, and also influencing crop yield, all major threats to food security. Intensive use of land by farmers, without undertaking appropriate nutrient management practices, results in the removal of more nutrients from the soil, which is connected to the decline in the productivity of crops. Plants need various nutrients in different ratios for their growth and development. The plants obtain these essential nutrients from soil, water, and air. Some of these nutrients are required in large amounts, whereas others are necessary in only small quantities for vegetative and reproductive growth of crop plants. As per recent speculation, reduced yield is mainly associated with reduction in the appropriate supply of nitrogen (N) by the soil, although total available N remains unaffected. In rice, silicon-solubilizing microorganisms have been noticed recently as more important for their role in the solubilization and mobilization of silicate minerals, rendering K (potassium) silicate and making potassium and silicon easily available to crop plants. Major causes of zinc deficiency in India are intensifying cultivation, unbalanced supply of nutrients, generally without zinc (Zn), and the predominance of lands with low organic matter content, calcareous nature, and high pH. Alternately, numerous microorganisms, especially those allied with roots, may increase the growth and productivity of plants. In the recent few years the use of Zn-solubilizing bacteria (ZSBs) as bio-fertilizers has acquired momentum, and bacteria are significant in improving soil nutrient content and sustaining crop production. ZSBs have been proven to have great ability to enhance Zn availability in the rhizosphere and to improve Zn supply to crop plants. Many genetically modified strains (GMSs) may be able to mobilize/solubilize more plant nutrients from the root zone. Development of GMSs with improved solubilization/mobilization of nutrients through genetic engineering and DNA technology is necessary to maintain an environmentally friendly and sustainable agriculture production system. Plant breeding strategies also appear to be a more reliable and cost-effective technique to enhance Zn content in plants. This chapter is mainly focused on silicon and zinc microorganisms, their role in the uptake mechanisms and solubilization activities in plants relative to nutrient dynamics, and the potential to apply this knowledge in managing a sustainable and eco-friendly agriculture system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnihorti VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can J Microbiol 16:877–880

    Article  Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silica bacteria. Dokl Akad S Kh Nauk 7:43–48

    Google Scholar 

  • Alexander M (1997) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. IZA and IFA, Brussels

    Google Scholar 

  • Avakyan ZA, Pavavarova TA, Karavako GI (1986) Properties of a new species, Bacillus mucilaginous. Microbiologica 55:477–482

    CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Baneld JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Basile-Doelsch RG, Amundson W, Stone CA, Masiello J, Bottero F, Colin F, Masin D, Borschneck J, Meunier JD (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion. Eur J Soil Sci 56:689–703. https://doi.org/10.1111/j.1365-2389.2005.00703.x

    Article  CAS  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effects of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal 25:537–546

    Article  CAS  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93:402–412

    Article  PubMed  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8:1015–1020

    Article  CAS  Google Scholar 

  • Boehle J, Lindsay WL (1969) Micronutrients, the fertilizer shoe-nails, pt. 6. In the limelight–zinc. Fertil Soln 13:6–12

    Google Scholar 

  • Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155:161–170

    Article  CAS  Google Scholar 

  • Bullen P, Kemila APF (1997) Influence of pH on the toxic effect of zinc, cadmium and pentachlorophenol on pure cultures of soil microorganisms. Environ Toxicol Chem 16:146–153

    Article  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Chaudhary SK, Thakur SK, Pandey AK (2007) Response of wetland rice to nitrogen and zinc. Oryza 44:44–47

    Google Scholar 

  • Cornelis JT, Delvauz B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    Article  CAS  Google Scholar 

  • Crane FL, Sun IL, Clark MG (1985) Transplasma-membrane redox systems in growth and evelopment. Biochim Biophys Acta 811:233–264

    Article  CAS  PubMed  Google Scholar 

  • Cunninghan JE, Kuiack C (1992) Production of citric acid and oxalic acid and solubilization of calcium phosphate by Penicillium billai. Appl Environ Microbiol 58:1451–1458

    Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  • French-Monar R, Rodrigues FA, Korndöfer GH, Datnoff LE (2010) Silicon suppresses Phytophthora blight development on bell pepper. J Phytopathol 158:554–560

    Article  CAS  Google Scholar 

  • Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8

    Article  CAS  Google Scholar 

  • Gascho GJ (1978) Response of sugarcane to calcium silicate slag. I. Mechanisms of response in Florida. Proc Fla Soil Crop Sci Soc 37:55–58

    Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  • Glick B (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi, New York

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 215–248

    Book  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Oxford University Press (Claredon), London

    Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013:1–7

    Article  CAS  Google Scholar 

  • Gurmani AR, Khan SU, Andaleep RK, Waseem KA (2012) Soil application of zinc improves growth and yield of tomato. Int J Agric Biol 14:91–96

    CAS  Google Scholar 

  • Han J, Gong P, Reddig K, Mitra M, Guo P, Li HS (2006) The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell 127:847–858

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Hayasaka T, Fujii H, Ishiguro K (2008) The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • He CQ, Tan G, Liang X, Du W, Chen Y, Zhi G (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5. https://doi.org/10.1016/j.apsoil.2009.07.003

    Article  Google Scholar 

  • Helmke PA, Koons RD, Schomberg PJ, Iskandar IK (1977) Determination of trace element contamination of sediments by multielement analysis of the clay-size fraction. Environ Sci Technol 11:984–989

    Article  CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Roberts PD, Datnoff LE (2011) Silicon suppresses Fusarium crown and root rot of tomato. J Phytopathol 159:546–554

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth: the hard and soft facts. J Gen Microbiol 137:725–734

    Article  CAS  Google Scholar 

  • Hutchins SR, Davidson MS, Brierley JA, Brierley CL (1986) Micro-organisms in reclamation of metals. Annu Rev Microbiol 40:311–336

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Gurmani ZA (2011) Role of macro and micro nutrients in the plant growth and development. Science Technology and Development, Islamabad. http://agris.fao.org/agris-search/search.do?recordID=PK2012000898

    Google Scholar 

  • Inal A, Pilbeam DJ, Gunes A (2009) Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr 32:112–128

    Article  CAS  Google Scholar 

  • Johaning GL, O’Dell BL (1989) Effect of zinc deficiency and food destruction on erythrocyte membrane zinc, phospholipid and protein content. J Nutr 199:1654–1660

    Article  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257. https://doi.org/10.1007/BF00008338

    Article  CAS  Google Scholar 

  • Joseph MH, Dhargave TS, Deshpande CP, Srivastava AK (2015) Microbial solubilisation of phosphate: Pseudomonas versus Trichoderma. Annu Plant Soil Res 17:227–232

    Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039900

    Book  Google Scholar 

  • Katyal JC, Sharma BD (1991) DTPA extractable and total Zn, Cu, Mn and Fe in Indian soils. Geoderma 49:165–179

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria (PGPR) and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 133–160

    Chapter  Google Scholar 

  • Khande R, Sushil KS, Ramesh A, Mahaveer PS (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138. https://doi.org/10.1016/j.rhisph.2017.09.002

    Article  Google Scholar 

  • Kiekens L (1995) Zinc in heavy metals. In: Alloway BJ (ed) Soils. Blackie, London

    Google Scholar 

  • Kloepper JW, Okon Y (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, FL, pp 111–118

    Google Scholar 

  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, Studies in plant science, vol 8. Elsevier, Amsterdam, pp 57–84

    Chapter  Google Scholar 

  • Kovda VA (1973) Irrigation, drainage and salinity – an international source book. FAO, UNESCO, Rome, pp 77–79

    Google Scholar 

  • Kumar R, Bohra JS (2014) Effect of NPKS and Zn application on growth, yield, economics and quality of baby corn. Arch Agron Soil Sci 60:1193–1206. https://doi.org/10.1080/03650340.2013.873122

    Article  CAS  Google Scholar 

  • Kumar R, Meena VS (2016) Towards the sustainable management of problematic soils in Northeast India. In: Bisht J, Meena V, Mishra P, Pattanayak A (eds) Conservation agriculture. Springer, Singapore, pp 339–365. https://doi.org/10.1007/978-981-10-2558-7_13

    Chapter  Google Scholar 

  • Kumar R, Bohra JS, Kumawat N, Singh AK (2015a) Fodder yield, nutrient uptake and quality of baby corn (Zea mays L.) as influenced by NPKS and Zn fertilization. Res Crops 16:243–249. https://doi.org/10.5958/2348-7542.2015.00036.4

    Article  Google Scholar 

  • Kumar R, Bohra JS, Singh AK, Kumawat N (2015b) Productivity, profitability and nutrient-use efficiency of baby corn (Zea mays) as influenced of varying fertility levels. Indian J Agron 60:285–290

    Google Scholar 

  • Kumar R, Patra MK, Thirugnanavel A, Chatterjee D, Deka BC (2015c) Towards the natural resource management for resilient shifting cultivation system in Eastern Himalayas. In: Bisht J, Meena V, Mishra P, Pattanayak A (eds) Conservation agriculture. Springer, Singapore, pp 409–436. https://doi.org/10.1007/978-981-10-2558-7_16

    Chapter  Google Scholar 

  • Kumar A, Sen A, Kumar R (2016a) Micronutrient fortification in crop to enhance growth, yield and quality of aromatic rice. J Environ Biol 37:973–977

    CAS  PubMed  Google Scholar 

  • Kumar A, Sen A, Kumar R, Upadhyay PK (2016b) Effect of zinc, iron and manganese levels on growth attributes and grain yield of rice. Ecol Environ Conserv 22:729–734

    Google Scholar 

  • Kumar R, Bohra JS, Kumawat N, Kumar A, Kumari A, Singh AK (2016c) Root growth, productivity and profitability of baby corn (Zea mays L.) as influenced by nutrition levels under irrigated ecosystem. Res Crops 17:41–46. https://doi.org/10.5958/2348-7542.2016.00008.5

    Article  Google Scholar 

  • Kumar R, Kumawat N, Kumar S, Singh AK, Bohra JS (2017) Effect of NPKS and Zn fertilization on growth, yield and quality of baby corn: a review. Int J Curr Microbiol Appl Sci 6:1392–1428. https://doi.org/10.20546/ijcmas.2017.603.161

    Article  CAS  Google Scholar 

  • Kumar R, Bohra JS, Kumawat N, Upadhyay PK, Singh AK (2018) Effect of balanced fertilization on production, quality, energy use efficiency and soil health of baby corn (Zea mays). Indian J Agric Sci 88:28–34

    CAS  Google Scholar 

  • Kumawat N, Singh RP, Kumar R, Kumari A, Kumar P (2012) Response of intercropping and integrated nutrition on production potential and profitability on rainfed pigeonpea. J Agric Sci 4(7):154–162

    Google Scholar 

  • Kumawat N, Singh RP, Kumar R (2013a) Effect of integrated nutrient management on the performance of sole and intercropped pigeonpea (Cajanus cajan) under rainfed conditions. Indian J Agron 58(3):309–315

    CAS  Google Scholar 

  • Kumawat N, Singh RP, Kumar R (2013b) Productivity, economics and water use efficiency of rainfed pigeonpea + black gram intercropping as influenced by integrated nutrient management. Indian J Soil Conserv 41(2):170–176

    Google Scholar 

  • Kumawat N, Singh RP, Kumar R, Yadav TP (2015) Effect of integrated nutrient management on productivity, nutrient uptake and economics of rainfed pigeonpea (Cajanus cajan) and blackgram (Vigna mungo) intercropping system. Indian J Agric Sci 85(2):171–176

    CAS  Google Scholar 

  • Kumawat N, Kumar R, Kumar S, Meena VS (2017) Nutrient solubilizing microbes (NSMs): its role in sustainable crop production. In: Meena VS, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 25–61. https://doi.org/10.1007/978-981-10-5343-6_2

    Chapter  Google Scholar 

  • Laruelle GG, Roubeix V, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi PQ, Meunier JD, Meybeck M, Michalopoulos P, Moriceau B, Ní Longphuirt S, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier P, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land–ocean transition. Global Biogeochem Cycles 23:GB4031. https://doi.org/10.1029/2008GB003267

    Article  CAS  Google Scholar 

  • Li QF, Ma CC, Shang QL (2007) Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress. Ying Yong Sheng Tai Xue Bao 18:531–536

    CAS  PubMed  Google Scholar 

  • Liang S, Stroeve J, Box JE (2005) Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): the improved direct retrieval algorithm and validation with Greenland in situ measurement. J Geophys Res 110:D10109. https://doi.org/10.1029/2004JD005493

    Article  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soil. John Wiley & Sons, New York

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertiliser, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Maleva M, Borisova G, Koshcheeva O, Sinenko O (2017) Biofertilizer based on silicate solubilizing bacteria improves photosynthetic function of Brassica juncea. AGROFOR Int J 2:13–19

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mathew G, Huh MY, Rhee JM, Lee MH, Nah C (2004) Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica. Polym Adv Technol 15:400–408

    Article  CAS  Google Scholar 

  • Matichencov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 209–219

    Chapter  Google Scholar 

  • Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugarcane Technol 22:21–30

    Google Scholar 

  • Maze P (1915) Détermination des élémentsminé rauxraresné cessairesau développement du maïs. Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 60:211–214

    Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V (2014a) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B Biol Sci 84:505

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014b) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014c) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Monger HC, Kelly EF (2002) Silica minerals. In: Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 611–636

    Google Scholar 

  • Muralikannan N, Anthoniraj S (1998) Occurrence of silicate solubilizing bacteria in rice ecosystem. Madras Agric J 85:47–50

    Google Scholar 

  • Nanayakkara UN, Uddin W, Datnoff LE (2008) Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant Soil 303:83–94

    Article  CAS  Google Scholar 

  • Narayanaswamy C, Prakash NB (2009) Calibration and categorization of plant available silicon in rice soils of South India. J Plant Nutr 32:1237–1254

    Article  CAS  Google Scholar 

  • Nene YL (1966) Symptoms, cause and control of khaira disease of paddy. Bull Indian Phytopathol Soc 3:97–191

    Google Scholar 

  • Nguyen C, Yan W, Le Tacon F, Lapyire F (1992) Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) P.D. Orton. Plant Soil 143:193–199

    Article  CAS  Google Scholar 

  • Parisi B, Vallee BL (1969) Metal enzyme complexes activated by zinc. J Biol Chem 179:803–807

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220. https://doi.org/10.1139/m96-032

    Article  CAS  PubMed  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Pedda SK, Peera G, Balasubramaniam P, Mahendran PP (2016) Effect of silicate solubilizing bacteria and fly ash on silicon uptake and yield of rice under lowland ecosystem. J Appl Nat Sci 8:55–59

    Article  Google Scholar 

  • Phonde DB, Banerjee K (2015) Plant available silicon status and its relationship with soil properties, leaf silicon and cane yield. In: Poster presented in National seminar on Frontiers in Agrochemicals and Pest management Shivaji University Kolhapuron Jan 29–30, 2015

    Google Scholar 

  • Potarzycki J, Grzebisz W (2009) Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ 55:519–527

    Article  CAS  Google Scholar 

  • Prasad R (2010) Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr Sci 98:1300–1304

    CAS  Google Scholar 

  • Rains B (1976) Periglacial processes and environments, by AL Washburn. N Z Geogr 32:203–304

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  • Reed ST, Martens DC (1996) Copper and zinc. In: Sparks DL (ed) Methods of soil analysis. Part 3: Chemical methods. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (2004) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Rodrigues F, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Mcnally DJ, Datnoff LE, Jones JB, Labbé C, Benhamou N (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Jurick WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    Article  CAS  Google Scholar 

  • Saeed M, Fox RL (1977) Relation between suspension pH and zinc solubility in acid and calcareous soils. Soil Sci 124:199–204

    Article  CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization of different zinc solubilizing bacterial (ZBS) strains. Braz J Microbiol 34:121–125

    Article  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 35:121–125

    Article  CAS  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44:235–241

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Chapter  Google Scholar 

  • Sauerbeck D (1982) Which heavy metal concentration in plants should not be exceeded in order to avoid detrimental effects on their growth. Landw Forsch Sonderh 39:108–129

    CAS  Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1145–1152

    Article  Google Scholar 

  • Sbartai H, Djebar M, Rouabhi R, Sbartai I, Berrebbah H (2011) Antioxidative response in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. Am Eurasian J Toxicol Sci 3:41–46

    Google Scholar 

  • Schulthess CP, Tokunaga S (1996) Metal and pH effects on adsorption of poly (vinyl alcohol) by silicon oxide. Soil Sci Soc Am J 60:92–98

    Article  CAS  Google Scholar 

  • Shaikh S, Saraf M (2017) Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatal Agric Biotechnol 9:120–126

    Article  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for Basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh MV (2011) Assessing extent of zinc deficiency for soil factors affecting nutritional scarcity in humans and animals. Indian J Fertil 7:36–43

    CAS  Google Scholar 

  • Sommer AL (1926) Studies concerning the essential nature of aluminum and silicon for plant growth. Univ Calif Publ Agric Sci 5:57–81

    CAS  Google Scholar 

  • Sommer C, Schomacher M, Berger C, Kuhnert K, Muller HD, Schwab S (2006) Neuroprotective cannabinoid receptor antagonist SR141716A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra. Acta Neuropathol 112:277–286

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Oxford and IBH, New Delhi

    Google Scholar 

  • Sunithakumari K, Padma Devi SN, Vasandha S (2016) Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Curr Sci 110:196–205

    Article  CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as essential element for higher plants. Commun Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, K holdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk J Agric For 34:349–359

    CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaten JD (1984) Zinc in soil fertility and fertilizers, 4th edn. Macmillan, New York, pp 382–391

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (2009) Soil fertility and fertilizer-an introduction to nutrient management, 7th edn. Prentice Hall of India, New Delhi

    Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a re-estimate. Science 268:375–379

    Article  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37:1–14

    Article  CAS  Google Scholar 

  • Tubana BT, Heckman JR (2015) Silicon in soils and plants. In: Rodrigues FA, Datnoff LE (eds) Silicon and plant disease. Springer, Cham, pp 7–51

    Chapter  Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14:889–910

    Google Scholar 

  • Van Bockhaven J, Spichal L, Novak O, Strand M, Asano T, Kikuchi S, Hofte M, De Vleesschauwer D (2014) Silicon induces resistance to brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    Article  CAS  Google Scholar 

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol Biotechnol 14:169–177

    CAS  Google Scholar 

  • Wallace A (1993) Participation of silicon in cation–anion balance as a possible mechanism for aluminum and iron tolerance in some Gramineae. J Plant Nutr 16:547–553

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. VCH Verlagsgesellschaft, Weinheim, pp 1–18

    Google Scholar 

  • Whiting SN, De Souza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyper accumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational by pass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank our esteemed reviewers involved directly or indirectly for their substantial critical comments and suggestions to improve the quality of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumawat, N. et al. (2019). Silicon (Si)- and Zinc (Zn)-Solubilizing Microorganisms: Role in Sustainable Agriculture. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_6

Download citation

Publish with us

Policies and ethics