Skip to main content

Biofertilizers and Their Role in Sustainable Agriculture

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

The designing of strategies/protocols for the improvement and enhancement of agricultural output is of utmost importance. Green revolution brings tremendous changes in the field of agriculture and farmer’s life. However, green revolution, similar to other scientific methods, has some drawbacks on sustainability of agriculture. Excessive uses of chemical fertilizers and pesticides in the crop field not only deteriorate the quality of soil but also largely degrade the quality of groundwater and thereby the available mineral nutrients. Biofertilizer being a mixture of growth-specific nutrients could be a boon for the agro-industry which could be helpful in enhanced crop production, while on other side it either protects or maintains the environmental conditions. Commercial production of biofertilizers and their easy availability in the market could change the life of farmers as well as agricultural sectors. Scientific advancement for the production of biofertilizer brought impressive attractions because of their involvement in food production and maintaining environmental protection. The government should motivate farmers to use fertilizers of natural origin instead of synthetic ones that could have beneficial impact on the society, environment, and lands. The present chapter focuses on the agricultural as well as societal benefits of using biofertilizers and intervenes to set efforts at the commercial level for the production of biofertilizers with applied functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335

    Article  Google Scholar 

  • Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool P (eds) Emerging technologies and management of crop stress tolerance, vol 2. Elsevier, New York, pp 69–95

    Chapter  Google Scholar 

  • Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir IA, Husnain T (2017) Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol 11:312–321

    Article  Google Scholar 

  • Barragan-Ocana A, Rivera MC (2016) Rural development and environmental protection through the use of biofertilizer’s in agriculture: an alternative for underdeveloped countries. Technol Soc 46:90–99

    Article  Google Scholar 

  • Belhadi D, Lajudie P, Ramdani N, Roux C, Boulila F, Tisseyre P, Boulila A, Benguedouar A, Kaci Y, Laguerre G (2018) Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 41:122–130

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal Fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1–13

    Google Scholar 

  • Bharadwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizer’s function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  Google Scholar 

  • Burchi F, Fanzo J, Frison E (2011) The role of food and nutrition system approaches in tackling hidden hunger. Int J Environ Res Public Health 8:358–373

    Article  Google Scholar 

  • Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, Mora ML (2018) Smart fertilizers as a strategy for sustainable agriculture. Adv Agron 147:119–157

    Article  Google Scholar 

  • Campos EVR, Proenca PLF, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF (2018) Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic. https://doi.org/10.1016/j.ecolind.2018.04.038

    Article  CAS  Google Scholar 

  • Cassan F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  CAS  Google Scholar 

  • Chatterjee A, Singh S, Aggarwal C, Yadav S, Rai R, Rai LC (2017) Role of algae as a biofertilizer’s. In: Algal green chemistry: recent progress in biotechnology. Elsevier, Cambridge, MA, pp 189–200

    Chapter  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen J, Liu YQ, Yan XW, Wei GH, Zhang JH, Fang LC (2018) Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicol Environ Saf 162:312–323

    Article  CAS  Google Scholar 

  • Corona MEP, Klundert IVD, Verhoeven JTA (1996) Availability of organic and inorganic phosphorus compounds as phosphorus sources for carex species. New Phytol 133:225–231

    Article  Google Scholar 

  • Damir O, Mladen PI, Bozidar S, Sran N (2011) Cultivation of the bacterium Azotobacter chroococcum for preparation of biofertilizers. Afr J Biotechnol 10:3104–3111

    Article  Google Scholar 

  • Dhull SB, Kaur P, Purewal SS (2016) Phytochemical analysis, phenolic compounds, condensed tannin content and antioxidant potential in Marwa (Origanum majorana) seed extracts. Resour Effic Technol 2:168–174

    Article  Google Scholar 

  • Emrooz HBM, Maleki M, Rahmani A (2018) Azolla-derived hierarchical nanoporous carbons: from environmental concerns to industrial opportunities. J Taiwan Inst Chem Eng 91:281–290. https://doi.org/10.1016/j.jtice.2018.05.027

    Article  CAS  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Eng Life Sci 11:187–196

    CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  Google Scholar 

  • Funga A, Ojiewo OC, Turoop L, Mwangi GS (2016) Symbiotic effectiveness of elite rhizobia strains nodulating desi type chickpea (Cicer arietinum L.) varieties. J Plant Sci 4:88–94

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gassman W, Appel HM (2016) The interface between abiotic and biotic stress responses. J Exp Bot 67:2023–2024

    Article  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  Google Scholar 

  • Herve M, Albert CH, Bondeau A (2016) On the importance of taking into account agricultural practices when defining conservation priorities for regional planning. J Nat Conserv 33:76–84

    Article  Google Scholar 

  • Islam MM, Shamsuddoha MD (2018) Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ Sci Pol 87:45–54

    Article  Google Scholar 

  • Jehangir IA, Mir MA, Bhat MA, Ahangar MA (2017) Biofertilizers an approach to sustainability in agriculture: a review. Int J Pure Appl Biosci 5:327–334

    Article  Google Scholar 

  • Jensen HL (1954) The azotobacteriaceae. Bacteriol Rev 18:195–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jnawali AD, Ojha RB, Marahatta S (2015) Role of azotobacter in soil fertility and sustainability–a review. Adv Plant Agric Res 2:250–253

    Google Scholar 

  • Johnstone DB (1955) Azotobacter fluorescence. J Bacteriol 69:481–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Waqas M, Shahzad R, You Y, Asaf S, Khan MA, Lee K, Joo G, Kim S, Lee I (2017) Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Sci Plant Nutr 63(3):233–241

    CAS  Google Scholar 

  • Kapulnik Y, Kigel J, Okon Y, Nur I, Henis Y (1981) Effect of Azospirillum inoculation on some growth parameters and N content of wheat, sorghum and panicum. Plant Soil 61:65–70

    Article  Google Scholar 

  • Kaur P, Dhull SB, Sandhu KS, Salar RK, Purewal SS (2018a) Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. J Food Meas Charact 12:1530–1538

    Article  Google Scholar 

  • Kaur R, Kaur M, Purewal SS (2018b) Effect of incorporation of flaxseed to wheat rusks: antioxidant, nutritional, sensory characteristics, and in vitro DNA damage protection activity. J Food Process Preserv 42:e13585. https://doi.org/10.1111/jfpp.13585

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171

    Article  Google Scholar 

  • Lauwers AM (1974) Biodegradation and utilization of silica and quartz. Arch Microbiol 95:67–78

    Article  CAS  Google Scholar 

  • Llorente BE, Alasia MA, Larraburu EE (2016) Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. New Biotechnol 33:32–40

    Article  CAS  Google Scholar 

  • Mahanta D, Rai RK, Dhar S, Varghese E, Raja A, Purakayastha TJ (2018) Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system. Ecol Eng 111:31–43

    Article  Google Scholar 

  • Mahato S, Kafle A (2018) Comparative study of Azotobacter with or without other fertilizers on growthand yield of wheat in Western hills of Nepal. Ann Agric Sci 16:250–256

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer’s for sustainable agriculture and economic development. Consilience Int J Sustain Dev 11:41–61

    Google Scholar 

  • Nagananda GS, Das A, Bhattacharya S, Kalpana T (2010) In vitro studies on effect of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum-graecum L. using a novel glass marble containing liquid medium. Int J Bot 6:394–403

    Article  Google Scholar 

  • Northup DE, Lavoie KH (2010) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222

    Google Scholar 

  • Nyoki D, Ndakidemi PA (2018) Rhizobium inoculation reduces P and K fertilization requirement in corn-soybean intercropping. Rhizosphere 5:51–56

    Article  Google Scholar 

  • Okon Y, Labandera-Gonzales C, Lage M, Lage P (2015) Agronomic applications of Azospirillum and other PGPR. In: de Brujin FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 921–932

    Google Scholar 

  • Pande A, Pandey P, Mehra S, Singh M, Kaushik S (2017) Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15:379–391

    Article  Google Scholar 

  • Pandey G (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299–307

    Article  Google Scholar 

  • Paul S, Verma OP, Rathi MS, Tyagi SP (2002) Effect of Azotobacter inoculation on seed germination and yield of onion (Allium cepa). Ann Agric Res 23:297–299

    Google Scholar 

  • Pereg L, Luz E, Bashan Y (2016) Assessment of afnity and specifcity of Azospirillum for plants. Plant Soil 399:389–414

    Article  CAS  Google Scholar 

  • Renneberg R, Berkling V, Loroch V (2017) Green biotechnology. In: Biotechnology for beginners, 2nd edn. Academic Press, Cambridge, MA, pp 235–279. https://doi.org/10.1016/B978-0-12-801224-6.00007-2

    Chapter  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  Google Scholar 

  • Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141:41–55

    Article  CAS  Google Scholar 

  • Ruiz-Sanchez M, Armada E, Munoz Y, Salamone IE, Aroca R, Ruiz-Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251:943–953

    Article  CAS  Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PP (2018) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic. https://doi.org/10.1016/j.ecolind.2018.05.084

    Article  Google Scholar 

  • Salar RK, Purewal SS, Sandhu KS (2017a) Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: a novel report on filamentous fungi. 3 Biotech 7:164

    Article  Google Scholar 

  • Salar RK, Purewal SS, Sandhu KS (2017b) Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Res Int 100:204–210

    Article  CAS  Google Scholar 

  • Sarker S, Bhuyan MAH, Rahman MM, Islam MA, Hossain MS, Basak SC, Islam MM (2018) From science to action: exploring the potentials of blue economy for enhancing economic sustainability in Bangladesh. Ocean Coast Manag 157:180–192

    Article  Google Scholar 

  • Sethi SK, Adhikary SP (2012) Azotobacter: a plant growth promoting Rhizobacteria used as biofertilizer. Dyn Biochem Process Biotechnol Mol Biol 6:68–74

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  Google Scholar 

  • Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145

    Article  Google Scholar 

  • Shivprasad S, Page WJ (1989) Catechol formation and melanization by Na+-dependent Azotobacter chroococum: a protective mechanism for aeroadaptation. Appl Environ Microbiol 55:1811–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2014) Potential of biofertilizer’s in crop production in Indian agriculture. Am J Plant Nutr Fertil Technol 4:33–40

    Article  Google Scholar 

  • Singh S, Kaur M, Sogi DS, Purewal SS (2018) A comparative study of phytochemicals, antioxidant potential and in-vitro DNA damage protection activity of different oat (Avena sativa) cultivars from India. J Food Meas Charact 13:1–10. https://doi.org/10.1007/s11694-018-9950-x

    Article  CAS  Google Scholar 

  • Socolofsky MD, Wyss O (1962) Resistance of the Azotobacter cyst. J Bacteriol 84:119–124

    CAS  PubMed  Google Scholar 

  • Soma K, Burg SWK, Hoefnagel EWJ, Stuiver M, Heide M (2018) Social innovation – a future pathway for blue growth. Mar Policy 87:363–370

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2015) Auxin signaling in Azospirillum brasilense: a proteome analysis. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, NJ, pp 937–940

    Chapter  Google Scholar 

  • Tena W, Wolde-Meskel E, Walley F (2016) Response of chickpea (Cicer arietinum L.) to inoculation with native and exotic Mesorhizobium strains in southern Ethiopia. Afr J Biotechnol 15:1920–1929

    Article  CAS  Google Scholar 

  • Umesha S, Singh PK, Singh RP (2018a) Microbial biotechnology and sustainable agriculture. In: Biotechnology for sustainable agriculture emerging approaches and strategies, pp 185–205. https://doi.org/10.1016/B978-0-12-812160-3.00006-4

    Chapter  Google Scholar 

  • Umesha S, Manukumar HMG, Chandrasekhar B (2018b) Sustainable agriculture and food security. In: Biotechnology for sustainable agriculture emerging approaches and strategies. Woodhead Publishing, Cambridge, MA, pp 67–92. https://doi.org/10.1016/B978-0-12-812160-3.00003-9

    Chapter  Google Scholar 

  • Uosif MAM, Mostafa AMA, Elsaman R, Moustafa ES (2014) Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in upper Egypt. J Radiat Res Appl Sci 7:430–437

    Article  Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2018) Silica Solubilization potential of certain bacterial species in the presence of different silicate minerals. SILICON 10:267–275

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang H, Liu S, Zhai L, Zhang J, Ren T, Fan B, Liu H (2015) Preparation and utilization of phosphate biofertilizer’s using agricultural waste. J Integr Agric 14:158–167

    Article  CAS  Google Scholar 

  • Webley DM, Henderson MEK, Taylor IF (1963) The microbiology of rocks and weathered stones. J Soil Sci 14:102–112

    Article  Google Scholar 

  • Wolde-meskel E, Van-Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakweya K, Kanampiu F, Giller KE (2018) Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152

    Article  Google Scholar 

  • Yang H, Schroeder-Moreno M, Giri B, Hu S (2018) Arbuscular mycorrhizal Fungi and their responses to nutrient enrichment. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 429–449

    Chapter  Google Scholar 

  • Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, Zhao M, Yin B (2018) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crop Res 216:158–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P., Purewal, S.S. (2019). Biofertilizers and Their Role in Sustainable Agriculture. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_12

Download citation

Publish with us

Policies and ethics