Skip to main content

Lectures on Curvature Flow of Networks

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 33))

Abstract

We present a collection of results on the evolution by curvature of networks of planar curves. We discuss in particular the existence of a solution and the analysis of singularities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. U. Abresch, J. Langer, The normalized curve shortening flow and homothetic solutions. J. Differ. Geom. 23(2), 175–196 (1986)

    Article  MathSciNet  Google Scholar 

  2. S.J. Altschuler, Singularities of the curve shrinking flow for space curves. J. Differ. Geom. 34(2), 491–514 (1991).

    Article  MathSciNet  Google Scholar 

  3. S. Angenent, Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature. Ann. Math. (2) 132(3), 451–483 (1990)

    Google Scholar 

  4. S. Angenent, On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33, 601–633 (1991)

    Article  MathSciNet  Google Scholar 

  5. S. Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions. Ann. Math. (2) 133(1), 171–215 (1991)

    Google Scholar 

  6. P. Baldi, E. Haus, C. Mantegazza, Non-existence of theta-shaped self-similarly shrinking networks moving by curvature. Commun. Partial Differ. Equ. 43(3), 403–427 (2018)

    Article  MathSciNet  Google Scholar 

  7. P. Baldi, E. Haus, C. Mantegazza, Networks self-similarly moving by curvature with two triple junctions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(2), 323–338 (2017)

    Article  MathSciNet  Google Scholar 

  8. P. Baldi, E. Haus, C. Mantegazza, On the classification of networks self-similarly moving by curvature. Geom. Flows 2, 125–137 (2017)

    MathSciNet  MATH  Google Scholar 

  9. G. Bellettini, M. Novaga, Curvature evolution of nonconvex lens-shaped domains. J. Reine Angew. Math. 656, 17–46 (2011)

    MathSciNet  MATH  Google Scholar 

  10. K.A. Brakke, The Motion of a Surface by Its Mean Curvature (Princeton University Press, Princeton, 1978)

    MATH  Google Scholar 

  11. L. Bronsard, F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation. Arch. Ration. Mech. Anal. 124(4), 355–379 (1993)

    Article  MathSciNet  Google Scholar 

  12. X. Chen, J.-S. Guo, Self-similar solutions of a 2-D multiple-phase curvature flow. Phys. D 229(1), 22–34 (2007)

    Article  MathSciNet  Google Scholar 

  13. X. Chen, J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line. Math. Ann. 350(2), 277–311 (2011)

    Article  MathSciNet  Google Scholar 

  14. C. Dellacherie, P.-A. Meyer, Probabilities and Potential. North-Holland Mathematics Studies, vol. 29 (North-Holland Publishing Co., Amsterdam, 1978)

    Google Scholar 

  15. S.D. Eidelman, N.V. Zhitarashu, Parabolic Boundary Value Problems. Operator Theory: Advances and Applications, vol. 101 (Birkhäuser Verlag, Basel, 1998)

    Google Scholar 

  16. M. Gage, An isoperimetric inequality with applications to curve shortening. Duke Math. J. 50(4), 1225–1229 (1983)

    Article  MathSciNet  Google Scholar 

  17. M. Gage, Curve shortening makes convex curves circular. Invent. Math. 76, 357–364 (1984)

    Article  MathSciNet  Google Scholar 

  18. M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–95 (1986)

    Article  MathSciNet  Google Scholar 

  19. M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MathSciNet  Google Scholar 

  20. J. Hättenschweiler, Mean curvature flow of networks with triple junctions in the plane. Master’s Thesis, ETH Zürich, 2007

    Google Scholar 

  21. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    Article  MathSciNet  Google Scholar 

  22. G. Huisken, A distance comparison principle for evolving curves. Asian J. Math. 2, 127–133 (1998)

    Article  MathSciNet  Google Scholar 

  23. T. Ilmanen, A. Neves, F. Schulze, On short time existence for the planar network flow. J. Differ. Geom. 111(1), 39–89 (2019)

    Article  MathSciNet  Google Scholar 

  24. D. Kinderlehrer, C. Liu, Evolution of grain boundaries. Math. Models Methods Appl. Sci. 11(4), 713–729 (2001)

    Article  MathSciNet  Google Scholar 

  25. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (American Mathematical Society, Providence, 1975)

    MATH  Google Scholar 

  26. J. Langer, A compactness theorem for surfaces with L p-bounded second fundamental form. Math. Ann. 270, 223–234 (1985)

    Article  MathSciNet  Google Scholar 

  27. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems (Birkhäuser, Basel, 1995)

    Google Scholar 

  28. A. Magni, C. Mantegazza, A note on Grayson’s theorem. Rend. Semin. Mat. Univ. Padova 131, 263–279 (2014)

    Article  MathSciNet  Google Scholar 

  29. A. Magni, C. Mantegazza, M. Novaga, Motion by curvature of planar networks II. Ann. Sc. Norm. Sup. Pisa 15, 117–144 (2016)

    MathSciNet  MATH  Google Scholar 

  30. C. Mantegazza, Lecture Notes on Mean Curvature Flow. Progress in Mathematics, vol. 290 (Birkhäuser/Springer Basel AG, Basel, 2011)

    Google Scholar 

  31. C. Mantegazza, M. Novaga, V.M. Tortorelli, Motion by curvature of planar networks. Ann. Sc. Norm. Sup. Pisa 3(5), 235–324 (2004)

    MathSciNet  MATH  Google Scholar 

  32. C. Mantegazza, M. Novaga, A. Pluda, F. Schulze, Evolution of networks with multiple junctions. arXiv Preprint Server – http://arxiv.org (2016)

  33. C. Mantegazza, M. Novaga, A. Pluda, Motion by curvature of networks with two triple junctions. Geom. flows 2, 18–48 (2017)

    MathSciNet  MATH  Google Scholar 

  34. L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 13, 116–162 (1959)

    MathSciNet  MATH  Google Scholar 

  35. A. Pluda, Evolution of spoon–shaped networks. Netw. Heterog. Media 11(3), 509–526 (2016)

    Article  MathSciNet  Google Scholar 

  36. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1984)

    Book  Google Scholar 

  37. O.C. Schnürer, A. Azouani, M. Georgi, J. Hell, J. Nihar, A. Koeller, T. Marxen, S. Ritthaler, M. Sáez, F. Schulze, B. Smith, Evolution of convex lens–shaped networks under the curve shortening flow. Trans. Am. Math. Soc. 363(5), 2265–2294 (2011)

    Article  MathSciNet  Google Scholar 

  38. L. Simon, Lectures on Geometric Measure Theory. Proc. Center Math. Anal., vol. 3 (Australian National University, Canberra, 1983)

    Google Scholar 

  39. V.A. Solonnikov, The Green’s matrices for parabolic boundary value problems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 14, 256–287 (1969). Translated in Semin. Math. Steklova Math. Inst. Leningrad 109–121 (1972)

    Google Scholar 

  40. A. Stahl, Convergence of solutions to the mean curvature flow with a Neumann boundary condition. Calc. Var. Partial Differ. Equ. 4(5), 421–441 (1996)

    Article  MathSciNet  Google Scholar 

  41. A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition. Calc. Var. Partial Differ. Equ. 4(4), 385–407 (1996)

    Article  MathSciNet  Google Scholar 

  42. A. Stone, A density function and the structure of singularities of the mean curvature flow. Calc. Var. Partial Differ. Equ. 2, 443–480 (1994)

    Article  MathSciNet  Google Scholar 

  43. Y. Tonegawa, N. Wickramasekera, The blow up method for Brakke flows: networks near triple junctions. Arch. Ration. Mech. Anal. 221(3), 1161–1222 (2016)

    Article  MathSciNet  Google Scholar 

  44. J. von Neumann, Discussion and remarks concerning the paper of C. S. Smith “Grain shapes and other metallurgical applications of topology”, in Metal Interfaces (American Society for Metals, Materials Park, 1952)

    Google Scholar 

  45. B. White, A local regularity theorem for mean curvature flow. Ann. Math. (2) 161(3), 1487–1519 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Novaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mantegazza, C., Novaga, M., Pluda, A. (2019). Lectures on Curvature Flow of Networks. In: Dipierro, S. (eds) Contemporary Research in Elliptic PDEs and Related Topics. Springer INdAM Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-18921-1_9

Download citation

Publish with us

Policies and ethics