Skip to main content

Surface Enhanced Raman Spectroscopy-Based Bio-molecular Detectors

  • Chapter
  • First Online:
Reviews in Plasmonics 2017

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

  • 617 Accesses

Abstract

This chapter aims to describe multifarious schemes of detecting bio-molecules by using surface enhanced Raman spectroscopy (SERS)-substrates. At first, current state of knowledge concerning the mechanism of SERS, SERS-active materials and various parameters that influence SERS have been discussed. Classification of SERS substrates, depending on their physical structures, has been reported in the following section. Finally, fabrication methods and recent applications of SERS including sensing, single molecule SERS, and real-world applications for bio-molecular probing have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krug JT, Wang GD, Emory SR, Nie S (1999) J Am Chem Soc 121:9208–9214

    Article  CAS  Google Scholar 

  2. Emory SR, Haskins S, Nie S (1998) J Am Chem Soc 120:8009–8010

    Article  CAS  Google Scholar 

  3. Nie S, Emory SR (1997) Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  4. Shankaran DR, Gobi KV, Miura N (2007) Sens Actuator B 121:158–177

    Google Scholar 

  5. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115–2120

    Article  CAS  PubMed  Google Scholar 

  6. Barhoumi A, Zhang D, Tam F, Halas NJ (2008) J Am Chem Soc 130:5523–5529

    Article  CAS  PubMed  Google Scholar 

  7. Qian K, Yang L, Li Z, Liu JJ (2013) Raman Spectrosc 44:21–28

    Article  CAS  Google Scholar 

  8. Zhang L (2013) Appl Surf Sci 270:292–294

    Article  CAS  Google Scholar 

  9. Jung J, Choo J, Kim DJ, Lee S (2006) Bull Korean Chem Soc 27:277–280

    Article  CAS  Google Scholar 

  10. Marnian-Lopez MB, Poppi R (2013) Anal Chim Acta 760:53–59

    Article  CAS  Google Scholar 

  11. Zhang XF, Zou MQ, Qi XH, Liu F, Zhu XH, Zhao BHJ (2010) Raman Spectrosc 41:1655–1660

    Article  CAS  Google Scholar 

  12. Yonjon CR, Haynes CL, Zhang X, Walsh JT, Van Duyne RP Jr (2004) Anal Chem 76:78–85

    Google Scholar 

  13. Moskovits M, Suh JSJ (1984) Phys Chem 88:5526–5530

    Article  CAS  Google Scholar 

  14. Brolo AG, Jiang Z, Irish DE (2003) J Electroanal Chem 547:163–172

    Article  CAS  Google Scholar 

  15. Link, El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366

    Google Scholar 

  16. Etchegoin PG, Le Ru EC (2011) Surface enhanced Raman spectroscopy: biophysical and life science applications (Schlucker S, ed) Wiley-VCH, Weinheim

    Google Scholar 

  17. Kneipp K, Moskovits M, Kneipp H (eds) (2006) Surface-enhanced Raman scattering. In: Schatz GC, Young MA, van Duyne RP Electromagnetic mechanism of SERS, vol 103. Springer, Berlin, pp 19–46

    Google Scholar 

  18. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, Amsterdam

    Google Scholar 

  19. Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  20. Sun Y, Xia Y (2003) Analyst 128:686–691

    Article  CAS  PubMed  Google Scholar 

  21. Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Procedia Chem 1:1560–1566

    Article  CAS  Google Scholar 

  22. Papavassiliou GC (1980) Prog Solid State Chem 12:185

    Article  Google Scholar 

  23. Aravind PK, Nitzan A, Metiu H (1981) Surf Sci 110:189

    Article  CAS  Google Scholar 

  24. Gérardy JM, Ausloos M (1983) Phys Rev B 27:6446

    Google Scholar 

  25. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) Mater Today 15:17

    Article  CAS  Google Scholar 

  26. Fleischmann M, Hendra PJ, Mc Quillan A (1974) J Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  27. Jeanmaire DL, Van Duyne RPJ (1977) Electroanal Chem Interfacial Electrochem 84:1–20

    Article  CAS  Google Scholar 

  28. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  29. Barber TE, List MS, Hass JW, Wachter EA (1994) Appl Spectrosc 48:1423–1427

    Article  CAS  Google Scholar 

  30. Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 75:790–798

    Google Scholar 

  31. Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu A, Braescu C, Leopold N (2013) Nanoscale Res Lett 8:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Opt Express 19:13565–13577

    Article  CAS  PubMed  Google Scholar 

  33. Mikac L, Ivanda M, Gotic M, Mihelj T, Horvat LJ (2014) Nanoparticle Res 16:2748

    Article  CAS  Google Scholar 

  34. Vinod M, Gopchandran KG (2014) Prog Nat Sci Mater Int 24:569–578

    Article  CAS  Google Scholar 

  35. Premasiri WR, Clarke RH, Womble ME (2001) Lasers Surg Med 28:330–334

    Article  CAS  PubMed  Google Scholar 

  36. Li T, Guo L, Wang Z (2008) Anal Sci 24:907–910

    Article  PubMed  Google Scholar 

  37. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Appl Phys Lett 82:257–259

    Article  CAS  Google Scholar 

  38. Prodan E, Nordlander P, Halas NJ (2003) Nano Lett 3:1411–1415

    Article  CAS  Google Scholar 

  39. Van Duyne RP, Haushalter JP (1983) J Phys Chem 87:2999–3003

    Article  Google Scholar 

  40. McAughtrie S, Lau K, Faulds K, Graham D (2013) Chem Sci 4:3566–3572

    Article  CAS  Google Scholar 

  41. Yang Y, Shi J, Kawamura G, Nogami M (2008) Scr Mater 58:862–865

    Article  CAS  Google Scholar 

  42. Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Nature Nanotechnol 6:452–460

    Google Scholar 

  43. Jana D, Gorunmez Z, He J, Bruzas I, Beck T, Sagle L (2016) J Phys Chem C 120:20814–20821

    Article  CAS  Google Scholar 

  44. Kneipp K, Yang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  45. Yang J, Tan X, Shih W-C, Cheng MM-C (2014) Biomed Microdevices 16:673–679

    Google Scholar 

  46. Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, He Y (2012) Appl Phys Lett 100(203104):1–4

    Google Scholar 

  47. Liu B, Lin M, Li H (2010) Sens Instrument Food Qual 4:13–19

    Article  CAS  Google Scholar 

  48. Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Appl Surf Sci 254:7494–7497

    Article  CAS  Google Scholar 

  49. Castillo F, Perez E, de la Rosa E (2011) Revista Maxicana de Fisica S57:61–65

    Google Scholar 

  50. Cerf A, Molnar G, Vieu C (2009) Appl Mater Interface 1:2544–2550

    Article  CAS  Google Scholar 

  51. Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804

    Article  CAS  Google Scholar 

  52. Peters RF, Gutierrez-Rivera L, Dew SK, Stepanova M (2015) J Vis Exp 97:1–17

    Google Scholar 

  53. Green M, Ming Liu F (2003) J Phys Chem B 107:13015–13021

    Article  CAS  Google Scholar 

  54. Alvarez-Puebla R, Cui B, Bravo-Vasquez J-P, Veres T, Fenniri H (2007) J Phys Chem C 111:6720–6723

    Article  CAS  Google Scholar 

  55. Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114–3116

    Article  CAS  Google Scholar 

  56. Wang Y, Wang W, Liu L, Feng L, Zeng Z, Li H, Xu W, Wu Z, Hu W et al (2013) Nano Res 6:159–166

    Article  CAS  Google Scholar 

  57. Li M, Zhao F, Zeng J, Qi J, Lu J, Shih W (2014) C. J Biomed Opt 19(111611):1–8

    CAS  Google Scholar 

  58. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir. Nano Lett 3:1229–1233

    Google Scholar 

  59. Panda SK, Jacob C (2009) Appl Phys A 96:805–811

    Article  CAS  Google Scholar 

  60. Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato MG, Villari V, Micali N, Maragò OM, Gucciardi P (2016) G Sci Rep 6(26952):1–13

    Google Scholar 

  61. Lee SJ, Morrill AR, Moskovits M, Hot J (2006) Am Chem Soc 128:2200–2201

    Article  CAS  Google Scholar 

  62. Netzer NL, Tanaka Z, Chen B, Jiang C (2013) J Phys Chem C 117:16187–16194

    Article  CAS  Google Scholar 

  63. En-zhong T (2014) Optoelectron Lett 10:241–243

    Article  Google Scholar 

  64. Huang Z, Zhang X, Reiche M, Liu L, Lee W, Shimizu T, Senz S, Gosele U (2008) Nano Lett 8:3046–3051

    Article  CAS  PubMed  Google Scholar 

  65. Chakraborti S, Basu RN, Panda SK (2018) Plasmonics, 13:1057–1080

    Google Scholar 

  66. Ma Y, Zhou J, Zou W, Jia Z, Petti L, Mormile P (2014) J Nanosci Nanotechnol 14:4245–4250

    Article  CAS  PubMed  Google Scholar 

  67. Khlebtsov BN, Khanadeev VA, Tsvetkov MY, Bagratashvili VN, Khlebtsov NG (2013) J Phys Chem C 117:23162–23171

    Article  CAS  Google Scholar 

  68. Fu Q, Zhang DG, Yi MF, Wang XX, Chen YK, Wang P, Ming H (2012) J Opt 14:085001

    Article  CAS  Google Scholar 

  69. Wang X, Zhou L, Wei G, Jiang T, Zhou J (2016) RSC Adv 6:708–715

    Article  CAS  Google Scholar 

  70. Schmidt DA, Kopf I, Bründermann E (2012) Laser Photon Rev 6:296

    Article  CAS  Google Scholar 

  71. Wessel J (1985) J Opt Soc Am B 2:1538–1551

    Article  CAS  Google Scholar 

  72. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Article  CAS  Google Scholar 

  73. Steidtner J, Pettinger B (2008) Phys Rev Lett 100:236101

    Article  CAS  PubMed  Google Scholar 

  74. Sun MT, Zhang ZL, Zheng HR, Xu HX (2012) Sci Rep 2:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seideman T, Scheidt KA, Jensen L, Schatz GC, Van Duyne RP (2011) J Phys Chem C 116:478

    Google Scholar 

  76. Domke KF, Pettinger B (2010) Chem Phys Chem 11:1365–1373

    Article  CAS  PubMed  Google Scholar 

  77. Bailo E, Deckert V (2008) Chem Soc Rev 37:921–930

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Z, Sheng S, Wang R, Sun M (2016) Anal Chem 88:9328–9346

    Article  CAS  PubMed  Google Scholar 

  79. Sha MY, Xu H, Natan MJ, Cromer R (2009) J Am Chem Soc 130:17214–17215

    Article  CAS  Google Scholar 

  80. Usta DD, Salimi K, Pinar A, Coban I, Tekinay T, Tuncel A (2016) ACS Appl Mater Interface 8:11934–11944

    Article  CAS  Google Scholar 

  81. Wang Y, Yan B, Chen L (2013) Chem Rev 113:1391–1428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the supports of DST-INSPIRE Faculty Project, DST, New Delhi, Govt. of India [IFA 12-ENG17] for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Kumar Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, S.K. (2019). Surface Enhanced Raman Spectroscopy-Based Bio-molecular Detectors. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_9

Download citation

Publish with us

Policies and ethics