Skip to main content

Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications

  • Chapter
  • First Online:

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

Tuning, splitting and broadening of the surface plasmon resonance as well as infrared polarization and forward scattering are interesting optical properties coming from metal nanoparticles dispersed in epoxy resin systems. The plasmonic properties are strongly influenced by the metal, viscosity of the resin, solvent, curing and stabilizing agent, filling factor, size, shape and aggregated states of the metal nanoparticles. Specifically, tuning can be achieved by controlling the size and shape of the spherical nanoparticles. Splitting and broadening of the surface plasmon is caused by elongated nanoparticles and their aggregated states, respectively. Metal nanowires aligned in the same direction exhibit infrared polarization, whereas forward scattering is achieved by nucleated particles above 30 nm. The metal nanoparticles can be prepared by thermal vacuum deposition, ion implantation, solvothermal, photochemical, and chemical reduction synthesis. Furthermore, the metal nanoparticles dispersed in epoxy resin/curing agent can be used to prepare a variety of materials such as molded bulk pieces, paints and coatings deposited on dielectric, metallic or semiconductor substrates. Nowadays, the study of the optical properties of metal nanostructures dispersed in epoxy resin systems has generated strong interest due to many potential applications including plasmonic photothermal conversion, light trapping, optical modulation, imaging, surface enhanced Raman spectroscopy and sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boyle MA, Martin CJ, Neuner JD (2003) ASM handbook/extraction epoxy resins. Prof. H. Hansmann Hochschule Wismar FB MVU, 2003, Werkstofftechnologien/Kunststofftechnik

    Google Scholar 

  2. Ellis B (ed) (1993) Chemistry and technology of epoxy resins. Blackie Academic and Professional, London, pp 42–43

    Google Scholar 

  3. http://www.huntsman.com/portal/page/portal/D47CF90DE464F9B0E040EBCD2C6B7C3F

  4. Lancaster JK (1972) Polymer-based bearing materials: the role of fillers and fibre reinforcement. Tribol Int 5:249–255

    Article  CAS  Google Scholar 

  5. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264

    Article  CAS  Google Scholar 

  6. Sun Y, Zhang Z, Moon KS, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci Part B: Polym Phys 42:3849–3858

    Google Scholar 

  7. Kahraman R, Sunar M, Yilbas B (2008) Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J Mater Process Technol 205:183–189

    Article  CAS  Google Scholar 

  8. Goh CF, Yu H, Yong SS, Mhaisalkar SG, Boey FYC, Teo PS (2005) Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles. Mater Sci Eng, B 117:153–158

    Article  Google Scholar 

  9. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core−shell structured Fe@Feo nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2:2100–2107

    Article  CAS  Google Scholar 

  10. Zhang X, Cheng X, Yin H, Yuan J, Xu C (2008) Preparation of needle shaped nano-copper by microwave-assisted water system and study on its application of enhanced epoxy resin coating electrical conductivity. Appl Surf Sci 254:5757–5759

    Article  CAS  Google Scholar 

  11. Mohd Hirmizi NH, Abu Bakar M, Tan WL, Abu Bakar NHH, Ismail J, See CH (2012) Electrical and thermal behavior of copper-epoxy nanocomposites prepared via aqueous to organic phase transfer technique. J Nanomater 2012:1–11

    Article  Google Scholar 

  12. Mohd Akib NA, Mohd Hirmizi NH, Tan WL, Abu Bakar NHH, Abu Bakar M, Ismail J, Teoh CH, See CH (2015) Synthesis of dispersed and self-assembled metal particles in epoxy via aqueous to organic phase transfer technique. Int J Theor Appl Nanotechnol 3:9–19

    Google Scholar 

  13. Lu J, Moon KS, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high-K polymer composites containing In-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16:1543–1548

    Article  CAS  Google Scholar 

  14. Molina YA, Tapia VR, Calva EB (2016) Silver nanoparticles in epoxy resin deposited on silicon substrates for light trapping. Plasmonics 11:971–979

    Article  CAS  Google Scholar 

  15. Rentería-Tapia V, Velásquez-Ordoñez C, Martínez MO, Barrera-Calva E, González-García F (2014) Silver nanoparticles dispersed on silica glass for applications as photothermal selective material. Energy Procedia 57:2241–2248

    Article  Google Scholar 

  16. Feng J, Ma X, Mao H, Liu B, Zhao X (2011) Ag/Epoxy nanocomposite film with aligned Ag nanowires and their polarization property. J Mater Res 26:2691–2700

    Article  CAS  Google Scholar 

  17. Stepanov AL, Valeev VF, Osin YN, Nuzhdin VI, Faizrakhmanov IA (2009) Formation of silver nanoparticles during deposition onto viscous-fluid epoxy resin. Tech Phys 54:997–1001

    Article  CAS  Google Scholar 

  18. Stepanov AL, Khaibullin RI, Valeev VF, Osin YN, Nuzhdin VI, Faizrakhmanov IA (2009) Ion synthesis of silver nanoparticles in viscous-fluid epoxy resin. Tech Phys 54:1162–1167

    Article  CAS  Google Scholar 

  19. Tapia VR, Tizapa MS, Mora ER, Martínez MLO, Franco A, Calva EB (2016) Solvent-induced morphological changes of polyhedral silver nanoparticles in epoxy resin. Plasmonics 11:1417–1426

    Article  CAS  Google Scholar 

  20. Sangermano M, Yagci Y, Rizza G (2007) In Situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes. Macromolecules 40:8827–8829

    Article  CAS  Google Scholar 

  21. Yagci Y, Sahin O, Ozturk T, Marchi S, Grassini S, Sangermano M (2011) Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives. React Funct Polym 71:857–862

    Article  CAS  Google Scholar 

  22. Yagci Y, Sangermano M, Rizza G (2008) Synthesis and characterization of gold−epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes. Macromolecules 41:7268–7270

    Article  CAS  Google Scholar 

  23. Chandra S, Doran J, McCormack SJ, Kennedy M, Chatten AJ (2012) Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction. Sol Energy Mater Sol Cells 98:385–390

    Article  CAS  Google Scholar 

  24. Pardinas-Blanco I, Hoppe CE, López-Quintela MA, Rivas J (2007) Control on the dispersion of gold nanoparticles in an epoxy network. J Non-Cryst Solids 353:826–828

    Article  CAS  Google Scholar 

  25. Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43:6245–6260

    Article  CAS  Google Scholar 

  26. Balan L, Malval JP, Lougnot J (2010) In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes. In: Perez DP (ed) Silver nanoparticles, InTech Open, Rijekai Croatia, pp 79–92

    Google Scholar 

  27. Tasdelen MA, Yagci Y (2011) Photochemical methods for the preparation of complex linear and cross-linked macromolecular structures. Aust J Chem 64:982–991

    Article  CAS  Google Scholar 

  28. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function af their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  29. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341

    Article  CAS  Google Scholar 

  30. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  Google Scholar 

  31. Sastry M (2003) Phase transfer protocols in nanoparticle synthesis. Curr Sci 85:1735–1745

    CAS  Google Scholar 

  32. Solis-Tinoco V, Sepulveda B, Lechuga LM (2015) Novel nanoplasmonic biosensor integrated in a microfluidic channel. Proc SPIE 9519:95190T

    Article  Google Scholar 

  33. Jose J, Jordan LR, Johnson TW, Lee SH, Wittenberg NJ, Oh S-H (2013) Topographically flat substrates with embedded nanoplasmonic devices for biosensing. Adv Funct Mater 23:2812–2820

    Article  CAS  Google Scholar 

  34. Bharadwaj R, Tripathi R, Prabhakar A, Mukherji S (2013) S-shaped SU-8 optical waveguide immobilized with gold nanoparticles for trace detection of explosives. Proc SPIE 8924:892424

    Article  Google Scholar 

  35. Marquez DT, Scaiano JC (2015) Plasmon induced self-assembly of gold nanorods in polymer films. Chem Commun 51:1911–1913

    Article  CAS  Google Scholar 

  36. Vizsnyiczai G, Lestyán T, Joniova J, Aekbote BL, Strejčková A, Ormos P, Miskovsky P, Kelemen L, Bánó G (2015) Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures. Langmuir 31:10087–10093

    Article  CAS  Google Scholar 

  37. Park S-G, Hwang H, Yang S-M (2013) Fabrication of highly uniform three-dimensional SERS substrates by control of wettability. J Mater Chem C 1:426–431

    Article  CAS  Google Scholar 

  38. Altuna FI, Antonacci J, Arenas GF, Pettarin V, Hoppe CE, Williams RJJ (2016) Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater Res Express 3:045003

    Article  Google Scholar 

  39. Leonardi AB, Puig J, Antonacci J, Arenas GF, Zucchi IA, Hoppe CE, Reven L, Zhu L, Toader V, Williams RJJ (2015) Remote activation by green-light irradiation of shape memory epoxies containing gold nanoparticles. Eur Polym J 71:451–460

    Article  CAS  Google Scholar 

  40. Latterman RE, Birrell S, Sullivan PA, Walker RA (2016) Improved pulsed laser operation with engineered nanomaterials. ACS Appl Mater Interfaces 8:19724–19731

    Article  CAS  Google Scholar 

  41. Khosla A, Gray BL (2010) Photopatternable electrical conductive Ag-SU-8 nanocomposite for MEMS/MST. ECS Trans 33:313–318

    Article  CAS  Google Scholar 

  42. Jiguet S, Bertsch A, Hofmann H, Renaud P (2004) Su8-silver photosensitive nanocomposite. Adv Eng Mater 6:719–724

    Article  CAS  Google Scholar 

  43. Jiguet S, Bertsch A, Hofmann H, Renaud P (2005) Conductive SU8-silver composite photopolymer. Adv Func Mater 15:1511–1516

    Article  CAS  Google Scholar 

  44. Fischer SV, Uthuppu B, Jakobsen MH (2015) In situ SU-8 silver nanocomposites. Beilstein J. Nanotechnol 6:1661–1665

    Article  CAS  Google Scholar 

  45. Ji Y-H, Liu Y, Huang G-W, Shen X-J, Xiao H-M, Fu S-Y (2015) Ternary Ag/Epoxy adhesive with excellent overall performance. ACS Appl Mater Interfaces 7:8041–8052

    Article  CAS  Google Scholar 

  46. Devarajan M, Sidek O, Kok Siong L, Ibrahim K, Abdul Azid I (2013) SU-8 piezoresistive microcantilever with high gauge factor. Micro Nano Lett. 8:123–126

    Article  Google Scholar 

  47. Araujo WWR, Teixeira FS, Da Silva GN, Salvadori DMF, Salvadori MC (2014) Cell adhesion and growth on surfaces modified by plasma and ion implantation. J Appl Phys 115:154701

    Article  Google Scholar 

  48. Akhavan O, Abdolahad M, Asadi R (2009) Storage of Ag nanoparticles in pore arrays of SU-8 matrix for antibacterial applications. J Phys D Appl Phys 42:135416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Rentería .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rentería, V., Franco, A. (2019). Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_8

Download citation

Publish with us

Policies and ethics