Skip to main content

Plasmonic-Additive Enabled Polymer Nanocomposites

  • Chapter
  • First Online:
  • 586 Accesses

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

The last decade has demonstrated extensive progress in the design, synthesis, functionalization, and application of plasmonic particles; with more recent efforts elucidating the multiple pathways to harness/transfer the plasmonic energy to hybridized materials. The ability to extend plasmonic applications beyond solution-based or surface deposited systems, and harness these unique properties within bulk composites will open up new application possibilities ranging from optically responsive components to solar-driven catalytically active structures. This chapter details primary additive stabilization pathways, including the incorporation of grafted polymers and silica capping shells, in order to effectively integrate the plasmonic particles into polymer systems. For commercially relevant PNC processing methods, such as extrusion and injection molding, the addition of silica protective shells are critical to maintain the nanoadditives morphology and correlated plasmonic properties. Recent efforts have shown that this approach allows for the viable integration of plasmonic additives that can survive the harsh mechanical mixing conditions and elevated processing temperatures (exceeding 300 °C) within the PNC processing steps. Opportunities to precisely tailor the resonance properties, control dispersion homogeneity, and facilitate alignment of the materials are established, allowing for the expanded application of plasmonic nanoadditives into functional PNC systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3):714–731

    Article  CAS  Google Scholar 

  2. Burgos-Mármol JJ, Patti A (2017) Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113:92–104

    Article  CAS  Google Scholar 

  3. Schneider GJ (2017) Dynamics of nanocomposites. Curr Opin Chem Eng 16:65–77

    Article  Google Scholar 

  4. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187

    Article  CAS  Google Scholar 

  5. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  CAS  Google Scholar 

  6. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. 4:6479

    CAS  Google Scholar 

  7. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  8. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972

    Article  CAS  Google Scholar 

  9. Cheng S, Xie S-J, Carrillo J-MY, Carroll B, Martin H, Cao P-F, Dadmun MD, Sumpter BG, Novikov VN, Schweizer KS, Sokolov AP (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11(1):752–759

    Article  CAS  PubMed  Google Scholar 

  10. Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Letters 4(4):398–402

    Article  CAS  Google Scholar 

  11. Smith MJ, Malak ST, Jung J, Yoon YJ, Lin CH, Kim S, Lee KM, Ma R, White TJ, Bunning TJ, Lin Z, Tsukruk VV (2017) Robust, uniform, and highly emissive quantum dot-polymer films and patterns using thiolene chemistry. ACS Appl Mater Interfaces 9(20):17435–17448

    Article  CAS  PubMed  Google Scholar 

  12. Vasileiadis M, Koutselas I, Pispas S, Vainos NA (2016) Design and evaluation of polymer matrices for the encapsulation of CdSe/ZnS quantum dots in photonic nanocomposite thin films. J Polym Sci Part B Polym Phys 54(5):552–560

    Article  CAS  Google Scholar 

  13. Daniel L, Gaël G, Céline M, Caroline C, Daniel B, Jean-Pierre S (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001

    Article  CAS  Google Scholar 

  14. Fu L-S, Wang W-S, Xu C-Y, Li Y, Zhen L (2017) Design, fabrication and characterization of pressure-responsive films based on the orientation dependence of plasmonic properties of Ag@Au nanoplates. Sci Rep 7(1):1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hore MJA, Composto RJ (2014) Functional polymer nanocomposites enhanced by nanorods. Macromolecules 47(3):875–887

    Article  CAS  Google Scholar 

  17. Ray C, Pal T (2017) Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487

    Article  CAS  Google Scholar 

  18. Tritschler U, Zlotnikov I, Keckeis P, Schlaad H, Cölfen H (2014) Optical properties of self-organized gold nanorod-polymer hybrid films. Langmuir 30(46):13781–13790

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Sun L, Gomez-Diaz JS, Hogan NL, Lu P, Khatkhatay F, Zhang W, Jian J, Huang J, Su Q, Fan M, Jacob C, Li J, Zhang X, Jia Q, Sheldon M, Alù A, Li X, Wang H (2016) Self-assembled epitaxial Au–Oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano Lett 16(6):3936–3943

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y-C, Lu L, Gunasekaran S (2017) Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosens Bioelectron 92:109–116

    Article  CAS  PubMed  Google Scholar 

  21. Khaletskaya K, Reboul J, Meilikhov M, Nakahama M, Diring S, Tsujimoto M, Isoda S, Kim F, Kamei K-I, Fischer RA, Kitagawa S, Furukawa S (2013) Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J Am Chem Soc 135(30):10998–11005

    Article  CAS  PubMed  Google Scholar 

  22. Gao C, Zhang Q, Lu Z, Yin Y (2011) Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 133(49):19706–19709

    Article  CAS  PubMed  Google Scholar 

  23. Tatsuma T, Nishi H, Ishida T (2017) Plasmon-induced charge separation: chemistry and wide applications. Chem Sci 8(5):3325–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma X-C, Dai Y, Yu L, Huang B-B (2016) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Chen Y, Wang T, Ma Z, Su Z (2008) Monodispersed gold nanorod-embedded silica particles as novel raman labels for biosensing. Adv Func Mater 18(2):355–361

    Article  CAS  Google Scholar 

  26. Wang Y, Wang Y, Wang W, Sun K, Chen L (2016) Reporter-embedded SERS tags from gold nanorod seeds: selective immobilization of reporter molecules at the tip of nanorods. ACS Appl Mater Interfaces 8(41):28105–28115

    Article  CAS  PubMed  Google Scholar 

  27. Damm S, Fedele S, Murphy A, Holsgrove K, Arredondo M, Pollard R, Barry JN, Dowling DP, Rice JH (2015) Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers. Appl Phys Lett 106(18):183109

    Article  CAS  Google Scholar 

  28. Nakahara Y, Takeda R, Tamai T, Yajima S, Kimura K (2017) Near-infrared dye immobilized in porous silica layer on gold nanorod and its fluorescence enhancement by strengthened electromagnetic field based on surface plasmon resonance. Plasmonics

    Google Scholar 

  29. Chateau D, Liotta A, Lundén H, Lerouge F, Chaput F, Krein D, Cooper T, Lopes C, El-Amay AAG, Lindgren M, Parola S (2016) Long distance enhancement of nonlinear optical properties using low concentration of plasmonic nanostructures in dye doped monolithic Sol-Gel materials. Adv Func Mater 26(33):6005–6014

    Article  CAS  Google Scholar 

  30. Shiigi H, Kinoshita T, Fukuda M, Le DQ, Nishino T, Nagaoka T (2015) Nanoantennas as biomarkers for bacterial detection. Anal Chem 87(7):4042–4046

    Article  CAS  PubMed  Google Scholar 

  31. Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nano 10(1):25–34

    Article  CAS  Google Scholar 

  32. Xuming Z, Yu Lim C, Ru-Shi L, Din Ping T (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401

    Article  CAS  Google Scholar 

  33. Priecel P, Adekunle Salami H, Padilla RH, Zhong Z, Lopez-Sanchez JA (2016) Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin J Catal 37(10):1619–1650

    Article  CAS  Google Scholar 

  34. Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14(3):1374–1380

    Article  CAS  PubMed  Google Scholar 

  35. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8(2):95–103

    Article  CAS  Google Scholar 

  36. Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12(12):1640–1648

    Article  CAS  PubMed  Google Scholar 

  37. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  PubMed  Google Scholar 

  38. Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP, Huang J, Alkilany AM, Sisco PN (2011) Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci 16(2):128–134

    Article  CAS  Google Scholar 

  39. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  40. Boyne DA, Chipara AC, Griep MH (2016) Transverse axis morphological control for tailored gold nanorod (GNR) synthesis. RSC Advanc 6(68):63634–63641

    Article  CAS  Google Scholar 

  41. Mackenzie GW, Devon AB, Mark HG (2017) Rapid synthesis of high purity gold nanorods via microwave irradiation. Mater Res Expr 4(3):035040

    Article  CAS  Google Scholar 

  42. Kim F, Song JH, Yang P (2002) Photochemical Synthesis of Gold Nanorods. J Am Chem Soc 124(48):14316–14317

    Article  CAS  PubMed  Google Scholar 

  43. Ting CL, Composto RJ, Frischknecht AL (2016) Orientational control of polymer grafted nanorods. Macromolecules 49(3):1111–1119

    Article  CAS  Google Scholar 

  44. Lin C-C, Ohno K, Clarke N, Winey KI, Composto RJ (2014) Macromolecular diffusion through a polymer matrix with polymer-grafted chained nanoparticles. Macromolecules 47(15):5357–5364

    Article  CAS  Google Scholar 

  45. Lin C-C, Griffin PJ, Chao H, Hore MJA, Ohno K, Clarke N, Riggleman RA, Winey KI, Composto RJ (2017) Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. J Chem Phys 146(20):203332

    Article  CAS  PubMed  Google Scholar 

  46. Lin C-C, Parrish E, Composto RJ (2016) Macromolecule and particle dynamics in confined media. Macromolecules 49(16):5755–5772

    Article  CAS  Google Scholar 

  47. Hore MJA, Ye X, Ford J, Gao Y, Fei J, Wu Q, Rowan SJ, Composto RJ, Murray CB, Hammouda B (2015) Probing the structure, composition, and spatial distribution of ligands on gold nanorods. Nano Lett 15(9):5730–5738

    Article  CAS  PubMed  Google Scholar 

  48. Yi C, Zhang S, Webb KT, Nie Z (2017) Anisotropic self-assembly of hairy inorganic nanoparticles. Acc Chem Res 50(1):12–21

    Article  CAS  PubMed  Google Scholar 

  49. Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43(1):437–463

    Article  CAS  Google Scholar 

  50. Schulz F, Friedrich W, Hoppe K, Vossmeyer T, Weller H, Lange H (2016) Effective PEGylation of gold nanorods. Nanoscale 8(13):7296–7308

    Article  CAS  PubMed  Google Scholar 

  51. Burrows ND, Lin W, Hinman JG, Dennison JM, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Li J, Murphy CJ (2016) Surface chemistry of gold nanorods. Langmuir 32(39):9905–9921

    Article  CAS  PubMed  Google Scholar 

  52. Pierrat S, Zins I, Breivogel A, Sönnichsen C (2007) self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett 7(2):259–263

    Article  CAS  PubMed  Google Scholar 

  53. Boyne DA, Chipara AC, Giri L, Griep MH (2016) Stabilization of Gold Nanorods (GNRs) in Aqueous and Organic Environments by Select Surface Functionalization. U.S. Army Research Laboratory Technical Report 2016, ARL-TR-7581, pp. 1–18

    Google Scholar 

  54. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708

    Article  CAS  PubMed  Google Scholar 

  55. Sivapalan ST, Vella JH, Yang TK, Dalton MJ, Haley JE, Cooper TM, Urbas AM, Tan LS, Murphy CJ (2013) Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods. J Phys Chem Lett 4(5). https://doi.org/10.1021/jz4000774

  56. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700

    Article  CAS  Google Scholar 

  57. Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) silica-coating and hydrophobation of ctab-stabilized gold nanorods. Chem Mater 18(10):2465–2467

    Article  CAS  Google Scholar 

  58. Crane CC, Wang F, Li J, Tao J, Zhu Y, Chen J (2017) Synthesis of Copper-Silica Core–Shell nanostructures with sharp and stable localized surface plasmon resonance. J Phys Chem C 121(10):5684–5692

    Article  CAS  Google Scholar 

  59. Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci 283(2):392–396

    Article  CAS  PubMed  Google Scholar 

  60. Imura Y, Koizumi S, Akiyama R, Morita-Imura C, Kawai T (2017) Highly stable silica-coated gold nanoflowers supported on Alumina. Langmuir 33(17):4313–4318

    Article  CAS  PubMed  Google Scholar 

  61. Boyne DA, Griep MH (2017) Decorated core-shell architectures: influence of the dimensional properties on hybrid resonances. Plasmonics 2017, 1–8

    Google Scholar 

  62. Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA (2017) Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. Polymer 110:250–259

    Article  CAS  Google Scholar 

  63. Ferrier RC, Koski J, Riggleman RA, Composto RJ (2016) Engineering the assembly of gold nanorods in polymer matrices. Macromolecules 49(3):1002–1015

    Article  CAS  Google Scholar 

  64. Petrova H, Perez Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8(7):814–821

    Article  CAS  PubMed  Google Scholar 

  65. Zou R, Zhang Q, Zhao Q, Peng F, Wang H, Yu H, Yang J (2010) Thermal stability of gold nanorods in an aqueous solution. Colloids Surf A 372(1):177–181

    Article  CAS  Google Scholar 

  66. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mater Chem 19(18):2704–2709

    Article  CAS  Google Scholar 

  68. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Devon Boyne and Dr. Joshua Orlicki of the U.S. Army Research Laboratory, whose diligent efforts and creative approaches established the foundational work supporting this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Griep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griep, M.H. (2019). Plasmonic-Additive Enabled Polymer Nanocomposites. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_1

Download citation

Publish with us

Policies and ethics