Skip to main content

Brain Connectivity Reduction Reflects Disturbed Self-Organisation of the Brain: Neural Disorders and General Anaesthesia

  • Chapter
  • First Online:
Multiscale Models of Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 13))

  • 610 Accesses

Abstract

The neurophysiological correlate of functional neural impairment is an open problem. Functional impairment may be observed as mental disorder, seizures or modification of consciousness level. The latter include loss of responsiveness under general anaesthesia, sleep or even trance in hypnosis. This chapter points out the relation between reduced brain connectivity as a possible correlate of neural functional impairment and self-organisation in the brain. A first numerical example demonstrates how neural noise disturbs self-organisation in the brain. Estimators of self-organisation such as global phase synchrony or information transfer quantify the degree of self-organisation. The chapter provides a brief literature review on how these estimators indicate brain connectivity modifications in neural disorders and under general anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer W (1986) The brain as a self-organising system. Eur Arch Psychiatry Neurol Sci 236(1):4–9

    Article  CAS  PubMed  Google Scholar 

  2. Haken H (1996) Principles of brain functioning. Springer, Berlin

    Book  Google Scholar 

  3. Kelso J (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  4. Haken H (2004) Synergetics. Springer, Berlin

    Book  Google Scholar 

  5. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  6. Singer W (1993) Synchronisation of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349

    Article  CAS  PubMed  Google Scholar 

  7. Hutt A, Munk M (2006) Mutual phase synchronization in single trial data. Chaos Complex Lett 2(2):6

    Google Scholar 

  8. Koenig P, Engel A, Singer W (1995) Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc Natl Acad Sci USA 92:290–294

    Article  CAS  Google Scholar 

  9. Singer W, Gray C (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosc 18:555–586

    Article  CAS  Google Scholar 

  10. Uhl C, Kruggel F, Opitz B, von Cramon DY (1998) A new concept for EEG/MEG signal analysis: detection of interacting spatial modes. Hum Brain Map 6:137

    Article  CAS  Google Scholar 

  11. Seifert B, Adamski D, Uhl C (2018) Analytical quantification of Shilnikov Chaos in epileptic EEG data. Front Appl Math Stat 4:57

    Article  Google Scholar 

  12. Hutt A (2004) An analytical framework for modeling evoked and event-related potentials. Int J Bif Chaos 14(2):653–666

    Article  Google Scholar 

  13. Hutt A, Riedel H (2003) Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials. Physica D 177:203

    Article  Google Scholar 

  14. Fuchs A, Mayville J, Cheyne D, Einberg H, Deeke L, Kelso J (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinate instabilities. NeuroImage 12:71–84

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph Clin Neurophysiol 48:609

    Article  CAS  PubMed  Google Scholar 

  16. Pascual-Marqui R, Michel C, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42(7):658–665

    Article  CAS  PubMed  Google Scholar 

  17. Hutt A, Schrauf M (2007) Detection of transient synchronization in multivariate brain signals, application to event-related potentials. Chaos Complex Lett 3(1):1–24

    Google Scholar 

  18. Jirsa V, McIntosh A (eds) (2007) Handbook of brain connectivity. Springer, New York

    Google Scholar 

  19. Sporns O (2010) Networks of the brain. MIT Press, Cambridge

    Book  Google Scholar 

  20. Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  21. Friston K, Harrison L, Penny W (2003) Dynamic causal modeling. NeuroImage 19:466–470

    Article  Google Scholar 

  22. Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lefebvre J, Hutt A, Knebel J, Whittingstall K, Murray M (2015) Stimulus statistics shape oscillations in nonlinear recurrent neural networks. J Neurosci 35(7):2895–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hutt A, Mierau A, Lefebvre J (2016) Dynamic control of synchronous activity in networks of spiking neurons. PLoS One 11(9):e0161488. https://doi.org/10.1371/journal.pone.0161488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buckwar E, Kuske R, Mohammed S, Shardlow T (2008) Weak convergence of the Euler scheme for stochastic differential delay equations. LMS J Comput Math 11:60–99

    Article  Google Scholar 

  26. Lachaux JP, Rodriguez E, Martinerie J, Varela F (1999) Measuring phase synchrony in brain signals. Human Brain Mapp 8:194–208

    Article  CAS  Google Scholar 

  27. Hutt A, Lefebvre J, Hight D, Sleigh J (2018) Suppression of underlying neuronal fluctuations mediates EEG during general anaesthesia. Neuroimage 179:414–428 https://doi.org/10.1016/j.neuroimage.2018.06.043

    Article  PubMed  Google Scholar 

  28. Lizier J (2014) JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front Robot AI 1:11

    Article  Google Scholar 

  29. Wibral M, Vicente R, Lizier J (2014) Directed information measures in neuroscience. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  30. Wollstadt P, Martinez-Zarzuela M, Vicente R, Díaz-Pernas F, Wibral M (2014) Efficient transfer entropy analysis of non-stationary neural time series. PLoS One 9(7):e102833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wibral M, Lizier J, Vögler S, Priesemann V, Galuske R (2014) Local active information storage as a tool to understand distributed neural information processing. Front Neuroinform 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein H, Vermersch P, Kuiper M, Steinling M, Wolters E, Valk J (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F (2003) Routine MRI for the differential diagnosis of Parkinson’s disease, MSA, PSP, and CBD. J Neural Transm 110(2):151–169

    Article  CAS  PubMed  Google Scholar 

  34. Sbardella E, Petsas N, Tona F, Pantano P (2015) Resting-state fMRI in MS: general concepts and brief overview of its application. Biomed Res Int 2015:212693

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dogonowski A, Andersen K, Madsen K, Sorensen P, Paulson O, Blinkenberg M, Siebner H (2014) Multiple sclerosis impairs regional functional connectivity in the cerebellum. Neuroimage: Clin 4:130–138

    Article  Google Scholar 

  36. Hawellek D, Hipp J, Lewis C, Corbetta M, Engel A (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci USA 108(47):19066–19071

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28:967–978

    Article  PubMed  Google Scholar 

  38. Greicius M, Srivastava G, Reiss A, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidemce from functional MRI. Proc Natl Acad Sci USA 101:4637–4642

    Article  CAS  PubMed  Google Scholar 

  39. Horwitz B, Grady C, Schrageter N, Duara R, Rapoport S (1987) Intercorrelations of regional glucose metabolic rates in Alzheimer’s disease. Brain Res 407:294–306

    Article  CAS  PubMed  Google Scholar 

  40. Bokde A, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, Teipel S, Moller H, Hampel H (2006) Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129:1113–1124

    Article  CAS  PubMed  Google Scholar 

  41. Diez-Cirarda M, Strafella A, Kim J, Pena J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2018) Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage: Clin 17:847–855

    Article  Google Scholar 

  42. Hacker C, Perlmutter J, Criswell S, Ances B, Snyder A (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711

    Article  PubMed  PubMed Central  Google Scholar 

  43. Disbrowa E, Carmichael O, He J, Lanni K, Dressler E, Zhang L, Malhado-Chang N, Sigvardt K (2014) Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. J Parkinson’s Dis 4:453–365

    Article  CAS  Google Scholar 

  44. Quinkert A, Vimal V, Weil Z, Reeke G, Schiff N, Banavar J, Pfaff D (2011) Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain. Proc Natl Acad Sci USA 108:15617–15623

    Article  CAS  PubMed  Google Scholar 

  45. Moruzzi G, Magoun H (1949) Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  46. Saper C, Scammell T, Lu J (2005) Hypothalamic regulatrion of sleep and circadian rhythms. Nature 437:1257–1263

    Article  CAS  PubMed  Google Scholar 

  47. Alkire M, Hudetz A, GTononi (2008) Consciousness and anesthesia. Science 322:876–880. https://doi.org/10.1126/science.1149213

  48. Brown E, Lydic R, Schiff N (2010) General anesthesia, sleep, and coma. N Engl J Med 363:2638–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sellers KK, Bennett DV, Hutt A, Frohlich F (2013) Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. J Neurophysiol 110:2739–2751

    Article  PubMed  Google Scholar 

  50. Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN (2012) Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA 110:E1142–1150

    Article  Google Scholar 

  51. Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3):283–291

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman S, Evans A (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19(13):5506–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Purdon PL, Pierce E, Bonmassar G, Walsh J, Harrell G, Deschler D, Kwo J, Barlow M, Merhar R, Lamus C, Mullaly C, Sullivan M, Maginnis S, Skoniecki D, Higgins H, Brown EN (2009) Simultaneous electroencephalography and functional magnetic resonance imaging of general anesthesia. Ann NY Acad Sci 1157:61–70

    Article  CAS  PubMed  Google Scholar 

  54. Franks N, Lieb W (1994) Molecular and cellular mechanisms of general anesthesia. Nature 367:607–614

    Article  CAS  PubMed  Google Scholar 

  55. Scheib C (2017) Brainstem influence on thalamocortical oscillations during anesthesia emergence. Front Syst Neurosci 11:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schiff N (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann NY Acad Sci 1129:105–118

    Article  PubMed  Google Scholar 

  57. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz A (2014) Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hudetz A, Mashour G (2016) Disconnecting consciousness: is there a common anesthetic end point? Anesth Analg 123(5):1228–1240

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, Ledoux D, Bonhomme V, Brichant JF, Tononi G, Laureys S, Friston KI (2012) Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 32(20):7082–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vizuete J, Pillay S, Ropella K, Hudetz A (2014) Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats. Neuroscience 275:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lewis L, Weiner V, Mukamel E, Donoghue J, Eskandar E, Madsen J, Anderson W, Hochberg L, Cash S, Brown E, Purdon P (2012) Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA 109(21):E3377–3386

    Article  CAS  PubMed  Google Scholar 

  63. Hashemi M, Hutt A, Sleigh J (2015) How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced anaesthetic sedation. J Comput Neurosci 39(1):155

    Article  PubMed  Google Scholar 

  64. Huang Z, Liu X, Mashour G, Hudetz A (2018) Timescales of intrinsic bold signal dynamics and functional connectivity in pharmacologic and neuropathologic states of unconsciousness. J Neurosci 38(9):2304–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wollstadt P, Sellers K, Rudelt L, Priesemann V, Hutt A, Frohlich F, Wibral M (2017) Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput Biol 13(6):e1005511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Pillay S, Li R, Vizuete J, Pechman K, Schmainda K, Hudetz A (2013) Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. NeuroImage 83:581–592

    Article  CAS  PubMed  Google Scholar 

  67. Liu X, Li S, Hudetz A (2014) Increased precuneus connectivity during propofol sedation. Neurosci Lett 561:18–23

    Article  CAS  PubMed  Google Scholar 

  68. Stammatakis E, Aadapa R, Absalom A, Menon D (2010) Changes in resting neural connectivity during propofol sedation. PLoS One 5:e14224

    Article  CAS  Google Scholar 

  69. Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, Tavares-Stoeckel C, Habeeb K, Brown EN (2011) Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA 108(21):8832–8837

    Article  CAS  PubMed  Google Scholar 

  70. Supp G, Siegel M, Hipp J, Engel A (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol 21:1988–1993

    Article  CAS  PubMed  Google Scholar 

  71. Lee M, Sanders R, Yeom SK, Won D-O, Seo K, Kim H, Tononi G, Lee S (2017) Network properties in transitions of consciousness during propofol-induced sedation. Sci Rep 7:16791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypothesis. J Physiol 591(4):787–797. https://doi.org/10.1113/jphysiol.2012.239590

    Article  CAS  PubMed  Google Scholar 

  73. Schevon CA, Goodman RR, McKhann G Jr, Emerson RG (2010) Propagation of epileptiform activity on a submillimeter scale. J Clin Neurophysiol 27:406-411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Netoff TI, Schiff SJ (2002) Decreased neuronal synchronization during experimental seizures. J Neurosci 22:7297–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutt, A. (2019). Brain Connectivity Reduction Reflects Disturbed Self-Organisation of the Brain: Neural Disorders and General Anaesthesia. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_19

Download citation

Publish with us

Policies and ethics