Skip to main content

Simulating Cognitive Deficits in Parkinson’s Disease

  • Chapter
  • First Online:
Multiscale Models of Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 13))

  • 618 Accesses

Abstract

Parkinson’s disease (PD) is caused by the accelerated death of dopamine–producing neurons. Numerous studies documenting cognitive deficits of people with PD have revealed impairment in a variety of tasks related to memory, learning, visuospatial skills, and attention. In this chapter, we describe a general approach used to model PD and review three computational models that have been used to simulate cognitive deficits related to PD. The models presentation is followed by a discussion of the role of glia cells and astrocytes in neurodegenerative diseases. We propose that more biologically–realistic computational models of neurodegenerative diseases that include astrocytes may lead to a better understanding and treatment of neurodegenerative diseases in general and PD in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  Google Scholar 

  2. Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396

    Article  CAS  Google Scholar 

  3. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  Google Scholar 

  4. Gotham AM, Brown RG, Marsden CD (1988) “Frontal” cognitive function in patients with Parkinson’s disease “on”and “off” levodopa. Brain 111:299–321

    Article  Google Scholar 

  5. Poliakoff E, Smith-Spark JH (2008) Everyday cognitive failures and memory problems in Parkinson’s patients without dementia. Brain Cogn 67:340–350

    Article  Google Scholar 

  6. Hélie S, Chakravarthy S, Moustafa AA (2013) Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci 7:174. http://journal.frontiersin.org/article/10.3389/fncom.2013.00174/abstract

    Article  Google Scholar 

  7. Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci 108:15647–15654

    Article  CAS  Google Scholar 

  8. Wickens J, Kotter R (1995) Cellular models of reinforcement. In: Houks JC, Davis JL, Beiser DG (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge

    Google Scholar 

  9. Monchi O, Taylor JG, Dagher A (2000) A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Netw 13:953–973

    Article  CAS  Google Scholar 

  10. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G (1993) Wisconsin card sorting test manual. Psychological Assessment Resources, Inc., Odessa

    Google Scholar 

  11. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  Google Scholar 

  12. Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM (1998) A neuropsychological theory of multiple systems in category learning. Psychol Rev 105(3):442–481

    Article  CAS  Google Scholar 

  13. Ashby FG, Valentin VV (2017) Multiple systems of perceptual category learning: theory and cognitive tests. In: Cohen H, Lefebvre C (eds) Handbook of categorization in cognitive science, 2nd edn. Elsevier, Oxford, pp 157–188

    Chapter  Google Scholar 

  14. Hélie S, Paul EJ, Ashby FG (2012) A neurocomputational account of cognitive deficits in Parkinson’s disease. Neuropsychologia 50(9):2290–2302

    Article  Google Scholar 

  15. Hélie S, Paul EJ, Ashby FG (2012) Simulating the effects of dopamine imbalance on cognition: from positive affect to Parkinson’s disease. Neural Netw 32:74–85

    Article  Google Scholar 

  16. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    Article  CAS  Google Scholar 

  17. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Ann Rev Physiol 63(1):795–813

    Article  CAS  Google Scholar 

  18. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  Google Scholar 

  19. Rusakov DA, Zheng K, Henneberger C (2011) Astrocytes as regulators of synaptic function a quest for the ca2+ master key. The Neuroscientist 17(5):513–523

    Article  CAS  Google Scholar 

  20. Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193

    Article  CAS  Google Scholar 

  21. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  Google Scholar 

  22. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  CAS  Google Scholar 

  23. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487

    CAS  PubMed Central  Google Scholar 

  24. Forman MS, Lal D, Zhang B, Dabir DV, Swanson E, Lee VMY, Trojanowski JQ (2005) Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J Neurosci 25(14):3539–3550

    Article  CAS  Google Scholar 

  25. Lobb C (2014) Abnormal bursting as a pathophysiological mechanism in Parkinson’s disease. Basal Ganglia 3(4):187–195

    Article  Google Scholar 

  26. Izhikevich EM (2007) Dynamical systems in neuroscience. Cambridge, MA, MIT Press

    Google Scholar 

  27. Hodgkin AL (1951) The ionic basis of electrical activity in nerve and muscle. Biol Rev 26(4):339–409

    Article  CAS  Google Scholar 

  28. Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PloS One 6(4):e19109

    Article  CAS  Google Scholar 

  29. Alvarellos-González A, Pazos A, Porto-Pazos AB (2012) Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks. Comput Math Methods Med 2012:10

    Article  Google Scholar 

  30. Sajedinia Z (2014) Artificial astrocyte networks, as components in artificial neural networks. In: Unconventional computation and natural computation. Springer, pp 316–326

    Google Scholar 

  31. Nadkarni S, Jung P (2004) Dressed neurons: modeling neural–glial interactions. Phys Biol 1(1):35

    Article  CAS  Google Scholar 

  32. Valenza G, Tedesco L, Lanatà A, De Rossi D, Scilingo EP (2013) Novel spiking neuron-astrocyte networks based on nonlinear transistor-like models of tripartite synapses. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 6559–6562

    Google Scholar 

  33. Haghiri S, Ahmadi A, Nouri M, Heidarpur M (2014) An investigation on neuroglial interaction effect on Izhikevich neuron behaviour. In: 2014 22nd Iranian conference on electrical engineering (ICEE). IEEE, pp 88–92

    Google Scholar 

  34. Sajedinia Z, Hélie S. (2018) A new computational model for astrocytes and their role in biologically realistic neural networks. Comput Intell Neurosci 2018

    Google Scholar 

  35. Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci 108(20):8467–8472

    Article  CAS  Google Scholar 

  36. Hélie S, Fleischer P (2016) Simulating the effect of reinforcement learning on neuronal synchrony and periodicity in the striatum. Front Comput Neurosci 10:40

    Article  Google Scholar 

  37. Ponzi A, Wickens J (2010) Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum. J Neurosci 30:5894–5911

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the National Institute of Mental Health, award #2R01MH063760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Hélie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hélie, S., Sajedinia, Z. (2019). Simulating Cognitive Deficits in Parkinson’s Disease. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_10

Download citation

Publish with us

Policies and ethics