Skip to main content

Nutrition in the Elderly with Renal Disease

  • Chapter
  • First Online:
Book cover Clinical Nephrogeriatrics

Abstract

Elderly patients affected by chronic kidney disease (CKD) and end-stage renal disease (ESRD) are rapidly increasing and represent the major part of renal patients. Elderly renal patients are frail and more susceptible to impair the nutritional status. Conversely, nutritional interventions represent a major part of the comprehensive therapeutic strategies either in predialysis or dialysis phase of the disease, and a safe balance between benefits and harms of nutritional treatment is certainly a challenge.

This chapter first identifies the true elderly renal patient and discusses its nutritional risk and the modalities to monitor the nutritional status and to early discover any nutritional impairment in the elderly renal patients. Thereafter, the major practical nutritional interventions along the course of the renal disease in elderly renal patients are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gekle M. Kidney and aging – a narrative review. Exp Gerontol. 2017;87:153–5.

    Article  CAS  Google Scholar 

  2. Musso CG, Jauregui JR. How to differentiate renal senescence from chronic kidney disease in clinical practice. Postgrad Med. 2016;128:716–21.

    Article  Google Scholar 

  3. Coresh J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  Google Scholar 

  4. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28:2838–44.

    Article  Google Scholar 

  5. Farrington K, et al. Clinical Practice Guideline Clinical Practice Guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR). Nephrol Dial Transpl. 2016;31:1–66.

    Article  Google Scholar 

  6. Hallan SI, Gansevoort RT. Moderator’s view: should we diagnose CKD using the ‘one-size fits all’ KDIGO 2012 guideline or do we need a more complex age-specific classification system? Nephrol Dial Transplant. 2014;29:780–2.

    Article  Google Scholar 

  7. Hemmelgarn BR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA – J Am Med Assoc. 2010;303:423–9.

    Article  CAS  Google Scholar 

  8. Tonelli M, Riella MC. Chronic kidney disease and the aging population. Kidney Int. 2014;85:487–91.

    Article  Google Scholar 

  9. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.

    Article  Google Scholar 

  10. Ikizler TA, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84:1096–107.

    Article  CAS  Google Scholar 

  11. Johansson L, Hickson M, Brown EA. Influence of psychosocial factors on the energy and protein intake of older people on dialysis. J Ren Nutr. 2013;23:348–55.

    Article  Google Scholar 

  12. Qureshi AR, et al. Factors predicting malnutrition in hemodialysis patients: a cross-sectional study. Kidney Int. 1998;53:773–82.

    Article  CAS  Google Scholar 

  13. Cianciaruso B, et al. Nutritional status in the elderly patient with uraemia. Nephrol Dial Transplant. 1995;10(Suppl 6):65–8.

    Article  Google Scholar 

  14. Rambod M, et al. Association of malnutrition-inflammation score with quality of life and mortality in hemodialysis patients: a 5-year prospective cohort study. Am J Kidney Dis. 2009;53:298–309.

    Article  Google Scholar 

  15. de Mutsert R, et al. Subjective global assessment of nutritional status is strongly associated with mortality in chronic dialysis patients. Am J Clin Nutr. 2009;89:787–93.

    Article  Google Scholar 

  16. de Santin FG, Bigogno FG, Dias Rodrigues JC, Cuppari L, Avesani CM. Concurrent and predictive validity of composite methods to assess nutritional status in older adults on hemodialysis. J Ren Nutr. 2016;26:18–25.

    Article  Google Scholar 

  17. Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17:432–7.

    Article  Google Scholar 

  18. Cederholm T, et al. Diagnostic criteria for malnutrition – an ESPEN consensus statement. Clin Nutr. 2015;34:335–40.

    Article  CAS  Google Scholar 

  19. Kalantar-Zadeh K, Kopple JD, Block G, Humphreys MH. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001;38:1251–63.

    Article  CAS  Google Scholar 

  20. Fouque D, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    Article  CAS  Google Scholar 

  21. Detsky AS, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11:8–13.

    Article  CAS  Google Scholar 

  22. Studenski SA, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol – Ser A Biol Sci Med Sci. 2014;69A:547–58.

    Article  Google Scholar 

  23. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159:413–21.

    Article  Google Scholar 

  24. Lauretani F, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60.

    Article  Google Scholar 

  25. United, U. S. R. D. S. U. 2011 A. D. R. A. of C. K. D. and E.-S. R. D. In the USRDS 2011 annual data report: Atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda, MD Natl. Institutes Heal. Natl. Inst. Diabetes Dig. Kidney Dis. Bethesda, MD 1–26. 2011.

    Google Scholar 

  26. Danfoss. Annual report 2013. 2013.

    Google Scholar 

  27. Kurella Tamura M, et al. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med. 2009;361:1539–47.

    Article  Google Scholar 

  28. World Health Organization. World report on ageing and health. 2015. Luxemb. Luxemb 1–260. 2015.

    Google Scholar 

  29. Bellizzi V, et al. Low-protein diets for chronic kidney disease patients: the Italian experience. BMC Nephrol. 2016;17:77.

    Article  Google Scholar 

  30. Ko GJ, Obi Y, Tortorici AR, Kalantar-Zadeh K. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care. 2017;20(1):77–85. https://doi.org/10.1097/MCO.0000000000000342.

    Article  CAS  Google Scholar 

  31. WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ. Tech. Rep. Ser. 1–265. 2007. ISBN 92 4 120935 6.

    Google Scholar 

  32. Young R. Special 1987 McCollum acid metabolism. 1987.

    Google Scholar 

  33. Moore LW, et al. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 2013;83:724–32.

    Article  CAS  Google Scholar 

  34. Luis D, et al. Renal function associates with energy intake in elderly community-dwelling men. Br J Nutr. 2014;111:2184–9.

    Article  CAS  Google Scholar 

  35. Slomowitz LA, Monteon FJ, Grosvenor M, Laidlaw SA, Koppel JD. Effect of energy intake on nutritional status in maintenance hemodialysis patients. Kidney Int. 1989;35:704–11.

    Article  CAS  Google Scholar 

  36. Hung KY, et al. Effects of diet intervention on body composition in the elderly with chronic kidney disease. Int J Med Sci. 2017;14:735–40.

    Article  CAS  Google Scholar 

  37. Brunori G, et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am J Kidney Dis. 2007;49:569–80.

    Article  CAS  Google Scholar 

  38. Bellizzi V, et al. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: an historical, cohort, controlled study. Nephrol Dial Transplant. 2015;30(1):71–7.

    Article  Google Scholar 

  39. Farrington K, et al. Clinical Practice Guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR<45 mL/min/1.73 m2): a summary document from the European Renal Best Practice Group. Nephrol Dial Transpl. 2017;32:9–16.

    Article  Google Scholar 

  40. Bellizzi V, et al. A Delphi consensus panel on nutritional therapy in chronic kidney disease. J Nephrol. 2016;29:593–602.

    Article  Google Scholar 

  41. Eckel RH, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 2014;63:2960–84.

    Article  Google Scholar 

  42. Millen BE, et al. The 2015 dietary guidelines advisory committee scientific report: development and major conclusions. Adv Nutr. 2016;7:438–44.

    Article  CAS  Google Scholar 

  43. Kelly JT, et al. Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2017;12:272–9.

    Article  Google Scholar 

  44. Chauveau P, et al. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol Dial Transplant. 2017. https://doi.org/10.1093/ndt/gfx085.

    Article  Google Scholar 

  45. Park YMM, et al. Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health in U.S. adults. Clin Nutr. 2017;36(5):1301–9.

    Article  Google Scholar 

  46. Martins MCT et al. A new approach to assess lifetime dietary patterns finds lower consumption of animal foods with aging in a longitudinal analysis of a health-oriented adventist population. Nutrients 2017;9.

    Google Scholar 

  47. Lin J, Curhan GC. Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. Clin J Am Soc Nephrol. 2011;6:160–6.

    Article  CAS  Google Scholar 

  48. Wakasugi M, et al. Association between overall lifestyle changes and the incidence of proteinuria: a population-based, cohort study. Intern Med. 2017;56:1475–84.

    Article  Google Scholar 

  49. Kanda E, Ai M, Kuriyama R, Yoshida M, Shiigai T. Dietary acid intake and kidney disease progression in the elderly. Am J Nephrol. 2014;39:145–52.

    Article  CAS  Google Scholar 

  50. Scialla JJ, et al. Higher net acid excretion is associated with a lower risk of kidney disease progression in patients with diabetes. Kidney Int. 2017;91:204–15.

    Article  CAS  Google Scholar 

  51. Banerjee T, Liu Y, Crews DC. Dietary patterns and CKD progression. Blood Purif. 2016;41:117–22.

    Article  CAS  Google Scholar 

  52. Ntanasi E, et al. Adherence to Mediterranean diet and frailty. J Am Med Dir Assoc. 2017. https://doi.org/10.1016/j.jamda.2017.11.005.

    Article  Google Scholar 

  53. Rossi M, et al. Mediterranean diet and glycaemic load in relation to incidence of type 2 diabetes: results from the Greek cohort of the population-based European Prospective Investigation into Cancer and Nutrition (EPIC). Diabetologia. 2013;56:2405–13.

    Article  CAS  Google Scholar 

  54. Trichopoulou A, et al. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur J Nutr. 2015;54:1311–21.

    Article  CAS  Google Scholar 

  55. Savanelli MC, et al. Preliminary results demonstrating the impact of Mediterranean diet on bone health. J Transl Med. 2017;15:81.

    Article  Google Scholar 

  56. Johansson L, et al. As we grow old: nutritional considerations for older patients on dialysis. Nephrol Dial Transplant. 2017;32:1127–36.

    PubMed  Google Scholar 

  57. Vanholder R, Lameire N, Annemans L, Van Biesen W. Cost of renal replacement: how to help as many as possible while keeping expenses reasonable? Nephrol Dial Transplant. 2016;31:1251–61.

    Article  Google Scholar 

  58. Mitch WE, Sapir DG. Evaluation of reduced dialysis frequency using nutritional therapy. Kidney Int. 1981;20:122–6.

    Article  CAS  Google Scholar 

  59. Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis. 1994;24:192–204.

    Article  CAS  Google Scholar 

  60. Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Integrated diet and dialysis programme. Nephrol Dial Transplant. 1998;13:132–8.

    Article  Google Scholar 

  61. Caria S, Cupisti A, Sau G, Bolasco P. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol. 2014;15:172.

    Article  Google Scholar 

  62. Sandrini M, et al. Incremental peritoneal dialysis: a 10 year single-centre experience. J Nephrol. 2016;29:871–9.

    Article  Google Scholar 

  63. Bolasco P, Cupisti A, Locatelli F, Caria S, Kalantar-Zadeh K. Dietary management of incremental transition to dialysis therapy: once-weekly hemodialysis combined with low-protein diet. J Ren Nutr. 2016;26:352–9.

    Article  Google Scholar 

  64. Moss AH, Armistead NC. Improving end-of-life care for ESRD patients: an initiative for professionals. Nephrol News Issues. 2013;27:30–2.

    PubMed  Google Scholar 

  65. Cruz-Jentoft AJ, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.

    Article  Google Scholar 

  66. Musso CG, Jauregui JR, Macías Núñez JF. Frailty phenotype and chronic kidney disease: a review of the literature. Int Urol Nephrol. 2015;47:1801–7.

    Article  Google Scholar 

  67. Malafarina V, Uriz-Otano F, Malafarina C, Martinez JA, Zulet MA. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas. 2017;101:42–50.

    Article  Google Scholar 

  68. Myint MWW, et al. Clinical benefits of oral nutritional supplementation for elderly hip fracture patients: a single blind randomised controlled trial. Age Ageing. 2013;42:39–45.

    Article  Google Scholar 

  69. Flakoll P, et al. Effect of β-hydroxy-β-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition. 2004;20:445–51.

    Article  CAS  Google Scholar 

  70. Baier S, et al. Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of β-hydroxy-β-methylbutyrate (HMB), L-arginine, and L-lysine. J Parenter Enter Nutr. 2009;33:71–82.

    Article  CAS  Google Scholar 

  71. De Luis DA, Izaola O, Bachiller P, Perez Castrillon J. Effect on quality of life and handgrip strength by dynamometry of an enteral specific suplements with beta-hydroxy-beta-methylbutyrate and vitamin D in elderly patients. Nutr Hosp. 2015;32:202–7.

    PubMed  Google Scholar 

  72. Deutz NE, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35:18–26.

    Article  Google Scholar 

  73. Wu H, et al. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2015;61:168–75.

    Article  CAS  Google Scholar 

  74. van Zwieten A, et al. Prevalence and patterns of cognitive impairment in adult hemodialysis patients: the COGNITIVE-HD study. Nephrol Dial Transplant. 2017. https://doi.org/10.1093/ndt/gfx314.

    Article  Google Scholar 

  75. Drew DA, et al. Cognitive decline and its risk factors in prevalent hemodialysis patients. Am J Kidney Dis. 2017;69:780–7.

    Article  Google Scholar 

  76. Smith AD, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 2018;62:561–70.

    Article  Google Scholar 

  77. Locher JL, Robinson CO, Roth DL, Ritchie CS, Burgio KL. The effect of the presence of others on caloric intake in homebound older adults. J Gerontol – Ser A Biol Sci Med Sci. 2005;60:1475–8.

    Article  Google Scholar 

  78. Kistler BM, et al. Eating during hemodialysis treatment: a consensus statement from the International Society of Renal Nutrition and Metabolism. J Ren Nutr. 2018;28:4–12.

    Article  Google Scholar 

  79. Veeneman JM, et al. Protein intake during hemodialysis maintains a positive whole body protein balance in chronic hemodialysis patients. Am J Physiol – Endocrinol Metab. 2003;284:E954–65.

    Article  CAS  Google Scholar 

  80. Fouque D, et al. Use of a renal-specific oral supplement by haemodialysis patients with low protein intake does not increase the need for phosphate binders and may prevent a decline in nutritional status and quality of life. Nephrol Dial Transplant. 2008;23:2902–10.

    Article  CAS  Google Scholar 

  81. Cano NJ, et al. Intradialytic parenteral nutrition does not improve survival in malnourished hemodialysis patients: a 2-year multicenter, prospective, randomized study. J Am Soc Nephrol. 2007;18:2583–91.

    Article  CAS  Google Scholar 

  82. Marsen TA, Beer J, Mann H. Intradialytic parenteral nutrition in maintenance hemodialysis patients suffering from protein-energy wasting. Results of a multicenter, open, prospective, randomized trial. Clin Nutr. 2017;36:107–17.

    Article  Google Scholar 

Download references

Acknowledgments

The European Renal Nutrition (ERN) Working Group is an initiative of and supported by the European Renal Association – European Dialysis Transplant Association (ERA-EDTA).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellizzi, V., Aucella, F., Calella, P., Chauveau, P., Johansson, L., Teta, D. (2019). Nutrition in the Elderly with Renal Disease. In: Musso, C., Jauregui, J., Macías-Núñez, J., Covic, A. (eds) Clinical Nephrogeriatrics. Springer, Cham. https://doi.org/10.1007/978-3-030-18711-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18711-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18710-1

  • Online ISBN: 978-3-030-18711-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics