Skip to main content

Innate Immunity

  • Chapter
  • First Online:
Evolutionary Concepts in Immunology
  • 780 Accesses

Abstract

All defence systems have much in common. No matter whether we are thinking in terms of defending a mediaeval castle from greedy neighbours or a multicellular eukaryote from attack by pathogens, the basic story is always the same. The defence system employed will consist of three parts. The first part provides information about whether a dangerous situation is developing. In the case of the castle, sentries will provide this necessary information. In the case of an animal’s innate immune system, soluble extracellular receptor molecules, and cell-associated sensors expressed by macrophages and other innate sentinel cells will detect incipient infections or other deviations from the homeostatic norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andra J, Herbst R, Leippe M (2003) Amoebapores, archaic effector peptides of protozoan origin, are discharged into phagosomes and kill bacteria by permeabilizing their membranes. Dev Comp Immunol 27(4):291–304

    Article  CAS  Google Scholar 

  2. de Koning AP et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384

    Article  Google Scholar 

  3. Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9(3):165–178

    Article  CAS  Google Scholar 

  4. Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374

    Article  CAS  Google Scholar 

  5. Parthier C et al (2014) Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity. Proc Natl Acad Sci U S A 111(17):6281–6286

    Article  CAS  Google Scholar 

  6. Zhang Z et al (2016) Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748

    Article  CAS  Google Scholar 

  7. Liu M, Grigoriev A (2004) Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling? Trends Genet 20(9):399–403

    Article  Google Scholar 

  8. Yang X et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164(4):805–817

    Article  CAS  Google Scholar 

  9. Racimo F et al (2015) Evidence for archaic adaptive introgression in humans. Nat Rev Genet 16(6):359–371

    Article  CAS  Google Scholar 

  10. Dannemann M, Andres AM, Kelso J (2016) Introgression of neandertal- and denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am J Hum Genet 98(1):22–33

    Article  CAS  Google Scholar 

  11. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  CAS  Google Scholar 

  12. de Zoete MR et al (2011) Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci U S A 108(12):4968–4973

    Article  Google Scholar 

  13. Boyd AC et al (2012) TLR15 is unique to avian and reptilian lineages and recognizes a yeast-derived agonist. J Immunol 189(10):4930–4938

    Article  CAS  Google Scholar 

  14. Willems L, Gillet NA (2015) APOBEC3 interference during replication of viral genomes. Viruses 7(6):2999–3018

    Article  CAS  Google Scholar 

  15. Conticello SG et al (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 22(2):367–377

    Article  CAS  Google Scholar 

  16. Kranzusch PJ et al (2015) Ancient origin of cGAS-STING reveals mechanism of universal 2',3' cGAMP signaling. Mol Cell 59(6):891–903

    Article  CAS  Google Scholar 

  17. Martin M et al (2018) Analysis of drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep 23(12):3537–3550 e6

    Article  CAS  Google Scholar 

  18. Goto A et al (2018) The kinase IKKbeta regulates a STING- and NF-kappaB-dependent antiviral response pathway in drosophila. Immunity 49(2):225–234 e4

    Article  CAS  Google Scholar 

  19. Stetson DB et al (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598

    Article  CAS  Google Scholar 

  20. Rehwinkel J et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408

    Article  CAS  Google Scholar 

  21. Schuberth-Wagner C et al (2015) A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2'O-methylated self RNA. Immunity 43(1):41–51

    Article  CAS  Google Scholar 

  22. Howe K et al (2016) Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 6(4):160009

    Article  Google Scholar 

  23. Sancho D, Reis e Sousa C (2013) Sensing of cell death by myeloid C-type lectin receptors. Curr Opin Immunol 25(1):46–52

    Article  CAS  Google Scholar 

  24. Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the innate immune system. Immunity 44(4):739–754

    Article  CAS  Google Scholar 

  25. Daeron M et al (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224:11–43

    Article  CAS  Google Scholar 

  26. Carrillo-Bustamante P, Kesmir C, de Boer RJ (2016) The evolution of natural killer cell receptors. Immunogenetics 68(1):3–18

    Article  CAS  Google Scholar 

  27. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273

    Article  CAS  Google Scholar 

  28. Ostrop J, Lang R (2017) Contact, collaboration, and conflict: signal integration of Syk-coupled C-type lectin receptors. J Immunol 198(4):1403–1414

    Article  CAS  Google Scholar 

  29. Long EO et al (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258

    Article  CAS  Google Scholar 

  30. Sebe-Pedros A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18(8):498–512

    Article  CAS  Google Scholar 

  31. Monahan-Earley R, Dvorak AM, Aird WC (2013) Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 11(Suppl 1):46–66

    Article  Google Scholar 

  32. Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872

    Article  CAS  Google Scholar 

  33. Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58(9):701–713

    Article  CAS  Google Scholar 

  34. Ricklin D et al (2016) Complement component C3 – The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 274(1):33–58

    Article  CAS  Google Scholar 

  35. Ricklin D, Lambris JD (2016) Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221(6):740–746

    Article  CAS  Google Scholar 

  36. Wu F et al (2017) A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey. Cell Discov 3:17033

    Article  CAS  Google Scholar 

  37. Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207

    Article  CAS  Google Scholar 

  38. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  Google Scholar 

  39. Kolev M, Kemper C (2017) Keeping it all going-complement meets metabolism. Front Immunol 8:1

    Article  Google Scholar 

  40. Green DR (2017) Cell death and the immune system: getting to how and why. Immunol Rev 277(1):4–8

    Article  Google Scholar 

  41. Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26(13):R620–R627

    Article  CAS  Google Scholar 

Further Reading

  • Cornejo E, Dchlaermann P, Mukherjee S (2017) How to rewire the host cell: a home improvement guide for intracellular bacteria. J Cell Biol 216:3931–3948

    Article  CAS  Google Scholar 

  • Green DR (2017) Cell death and the immune system: getting to how and why. Immunol Rev 277:4–8

    Article  Google Scholar 

  • Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26:R620–R627

    Article  CAS  Google Scholar 

  • Janeway C (2017) Immunobiology, 9th edn

    Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors – taking an evolutionary approach. Nat Rev Genet 9(3):165–178

    Article  CAS  Google Scholar 

  • Litman GW, Dishaw L (eds) (2013) Changing views of the evolution of immunity. Front Immunol 4

    Google Scholar 

  • Loker ES (2012) Macroevolutionary immunology: a role for immunity in the diversification of animal life. Front Immunol 3:1–20

    Article  Google Scholar 

  • Ricklin D et al (2016) Complement component C3 – the “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 274(1):33–58

    Article  CAS  Google Scholar 

  • Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the innate immune system. Immunity 44:739–754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jack, R., Du Pasquier, L. (2019). Innate Immunity. In: Evolutionary Concepts in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-18667-8_3

Download citation

Publish with us

Policies and ethics