Skip to main content

Genetically Modified Sugarcane for Biofuels Production: Status and Perspectives of Conventional Transgenic Approaches, RNA Interference, and Genome Editing for Improving Sugarcane for Biofuels

  • Chapter
  • First Online:

Abstract

Sugarcane can produce sugar for world’s requirements of this sweetener, yield bioethanol to be used as vehicle fuel, generate electrical energy for export to the grid, and engender biodiesel for running heavy automobiles, simultaneously. Nevertheless, several constraints including impaired sugar production, high costs of second-generation biofuels, metabolic barriers and feedback controls, land and growth requirements, and biotic and abiotic stresses impede the role this incredible crop can play toward world’s energy matrix. Such obstacles have made it imperative to adopt transgenic approaches for surmounting the hitches and augment food as well as fuel production from sugarcane. Agrobacterium-mediated transformation has been apperceived as an efficient system for sugarcane transgenesis. Moreover, recent developments in next-generation sequencing, functional genomics, and genome editing have incremented the prospects of genetic manipulation of sugarcane through RNA interference and CRISPR/Cas, which are likely to boost the sugarcane’s share in the energy sector. Being a highly efficient photosynthesizer, huge biomass producer, and having an already established industry around the world, sugarcane is a promising crop for biofuel and bioenergy engenderment. Additional forms of sugar like isomaltose, apart from sucrose, have been expressed in sugarcane to breach the sucrose ceiling and repress its regulation mechanisms through transgenesis. Genetic modifications have also been recently strived to reduce lignin content in sugarcane cell wall, which is the major reason of extraordinarily high costs of second-generation bioethanol production. Moreover, efforts are also underway to yield lignocellulolytic enzymes required for digestion of lignocellulosic material of sugarcane inside the crop itself. Mix-stock concept is already maturing and cocktails of several enzymes have been expressed in sugarcane. Furthermore, there are also enormous prospects to produce biodiesel from sugarcane by introducing genes related to triacylglycerol production. Additionally, enhanced biomass production, improved cellulose accretion, transgenesis of energy cane, and biotic and abiotic stress tolerance are other potential ameliorations being targeted in sugarcane. Genetically modified sugarcane has been approved in Indonesia and Brazil for commercial cultivation, whereas field trials are in progress in Australia, Pakistan, and other cane-growing countries. It is anticipated that regulatory agencies would approve GM cane in other countries as well in near future. Therefore, transgenic sugarcane may be widely adopted by the industry to harvest maximum benefits from this phenomenal crop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AgroNews (2017) Brazil approves world’s first commercial GM sugarcane. http://news.agropages.com/News/NewsDetail22616.htm. Accessed 10 Nov 2018

  • Altpeter F, Oraby H (2010) Sugarcane. In: Genetic modification of plants. Springer International Publishers, New York, pp 453–472

    Chapter  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Molina PR, de la Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14(5):305–309. https://doi.org/10.1007/BF00232033

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, De La Riva GA, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3(4):247–255. https://doi.org/10.1023/A:1009616318854

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Téllez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by agrobacterium tumefaciens. Transgenic Res 7:213–222. https://doi.org/10.1023/A:1008845114531

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8(5):349–360. https://doi.org/10.1023/A:1008900230144

    Article  CAS  Google Scholar 

  • Arruda P (2012) Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol 23:315–322

    Article  CAS  PubMed  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. In: Plant chromosome engineering. Humana Press, Totowa, pp 1–35

    Google Scholar 

  • Bewg P (2015) Investigation of lignin biosynthesis in sugarcane for improved lignocellulosic ethanol production. Dissertation, Queensland University of Technology

    Google Scholar 

  • Bindon KA, Botha FC (2002) Carbon allocation to the insoluble fraction, respiration and triose-phosphate cycling in the sugarcane culm. Physiol Plant 116:12–19

    Article  CAS  PubMed  Google Scholar 

  • Birch RG (2007) Metabolic engineering in sugarcane: assisting the transition to a bio-based economy. In: Applications of plant metabolic engineering. Springer, Dordrecht, pp 249–281. https://doi.org/10.1007/978-1-4020-6031-1_11

    Chapter  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  CAS  PubMed  Google Scholar 

  • Botha FC, Groenewald JH (2001) Method for regulating or manipulating sucrose content and metabolism in sugar storing plants, eg increasing sucrose content, by regulating activity of pyrophosphate-dependent phosphofructokinase enzyme in plants. South Africa Patent Application ZA200101047-A, 25 July 2001

    Google Scholar 

  • Bottcher A, Cesarino I, Santos AB, Vicentini R, Mayer JLS, Vanholme R, Morreel K, Goeminne G, Moura JCMS, Nobile PM (2013) Lignification in sugarcane: biochemical characterization, gene discovery and expression analysis in two genotypes contrasting for lignin content. Plant Physiol 163(4):1539–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2(3):409–416. https://doi.org/10.1111/j.1365-313X.1992.00409.x

    Article  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Butterfield MK, Irvine JE, Valdez Garza M, Mirkov TE (2002) Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane. Theor Appl Genet 104:797–803. https://doi.org/10.1007/s00122-001-0830-z

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  PubMed  Google Scholar 

  • Carmona ER, Arencibia AD, Lopez J, Simpson J, Vargas D, Sala F (2005) Analysis of genomic variability in transgenic sugarcane plants produced by agrobacterium tumefaciens infection. Plant Breed 124:33–38

    Article  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244–248

    Article  CAS  PubMed  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2013) Commentary: why don’t plant leaves get fat? Plant Sci 207:128–134

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759

    Article  CAS  PubMed  Google Scholar 

  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:434–455

    Article  CAS  Google Scholar 

  • Chowdhury MKU, Vasil IK (1992) Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep 11(10):494–498. https://doi.org/10.1007/BF00236264

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by agrobacterium-mediated transformation and particle bombardment. Mol Breed 7(1):25–33. https://doi.org/10.1023/A:1009687511633

    Article  CAS  Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CT, Chapola RG, Hoffmann HP, Garcia AAF, Souza GM (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23:265–270. https://doi.org/10.1016/j.copbio.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  • Dale J (2007) Cellulosic ethanol: huge potential but challenging. Cent Trop Crop Biocommodities Qld Univ Technol Aust 35:111

    Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • de Alcantara GB, Dibax R, de Oliveira RA, Carlos J (2014) Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454. Acta Sci Agron 36:63–72. https://doi.org/10.4025/actasciagron.v36i1.16342

  • de Jesus Pereira E, Panek AD, Eleutherio ECA (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 8:120

    Article  PubMed Central  Google Scholar 

  • de Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  CAS  PubMed  Google Scholar 

  • Efendi E, Matsuoka M (2011) An efficient Agrobacterium-mediated transformation method for sugarcane (Saccharum officinarum L.). In: Proceedings of the annual international conference, Life sciences & engineering chapter. Syiah Kuala University, Kopelma Darussalam

    Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by agrobacterium-mediated transformation. Planta 206(1):20–27. https://doi.org/10.1007/s004250050369

    Article  Google Scholar 

  • Ewing E (2008) Self-processing sugarcane for cellulosic ethanol. Ethanol Producer Magazine. http://www.ethanolproducer.com/articles/3868/self-processing-sugarcane-for-cellulosic-ethanol? Accessed 4 May 2019

  • Fan Z, Yuan L (2010) Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. Plant Biotechnol J 8:308–315. https://doi.org/10.1111/j.1467-7652.2009.00484.x

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2015) Production of crops: sugarcane. http://faostat3.fao.org/browse/Q/QC/E. Accessed 10 Nov 2015

  • Ferreira-Leitão V, Perrone CC, Rodrigues J, Franke APM, Macrelli S, Zacchi G (2010) An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnol Biofuels 3:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fouad WM, Hao W, Xiong Y, Steeves C, Sandhu SK, Altpeter F (2015) Generation of transgenic energy cane plants with integration of minimal transgene expression cassette. Curr Pharm Biotechnol 16:407–413

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108(9):3803–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallois P, Lindsey K, Malone R (1995) Electroporation of tobacco leaf protoplasts using plasmid DNA or total genomic DNA. Methods Mol Biol 55:89–107. https://doi.org/10.1385/0–89603–328-7:89

    Article  CAS  PubMed  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q, Su Y, Xu L, Que Y (2016) Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer. PLoS One 11(4):e0153929. https://doi.org/10.1371/journal.pone.0153929

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia Tavares R, Lakshmanan P, Peiter E, O’Connell A, Caldana C, Vicentini R, Soares JS, Menossi M (2018) ScGAI is a key regulator of culm development in sugarcane. J Exp Bot 69:3823–3837. https://doi.org/10.1093/jxb/ery180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9(1):2638. https://doi.org/10.1038/s41467-018-05051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45(5):2060–2067. https://doi.org/10.2135/cropsci2004.0771

    Article  Google Scholar 

  • Gilbert RA, Comstock JC, Glaz B, Edmé SJ, Davidson RW, Glynn NC, Miller JD, Tai PYP (2008) Registration of ‘CP 00–1101’sugarcane. J Plant Regist 2:95–101

    Article  Google Scholar 

  • Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crop Res 111:39–46. https://doi.org/10.1016/j.fcr.2008.10.009

    Article  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333

    Article  CAS  PubMed  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  • Grice J, Wegener MK, Romanach LM, Paton S, Bonaventura P, Garrad S (2004) Genetically modified sugarcane: a case for alternate products. AgBioforum 6(4):162–168

    Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Bespalhok Filho JC, Vieira LGE (2014) Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36:2309–2319

    Article  CAS  Google Scholar 

  • Halling P, Simms-Borre P (2008) Overview of lignocellulosic feedstock conversion into ethanol-focus on sugarcane bagasse. Int Sugar J 110:191

    CAS  Google Scholar 

  • Hansom S, Bower R, Zhang L, Potier B, Elliott A, Basnayake S, Cordeiro G, Hogarth DM, Cox M, Berding N (1999) Regulation of transgene expression in sugarcane. In: Proceedings of XXIII meeting of International Society of Sugar Cane Technologists. The XXIII ISSCT Congress Organising Committee, STAI, New Delhi, pp 278–290

    Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896. https://doi.org/10.1111/j.1467-7652.2011.00597.x

    Article  CAS  PubMed  Google Scholar 

  • Hatfield R, Ralph J, Grabber JH (2008) A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation. Planta 228:919

    Article  CAS  PubMed  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heichel GH (1973) Comparative efficiency of energy use in crop production. Bulletin of Connecticut Agricultural Experiment Station, New Haven, p 26

    Google Scholar 

  • Henry RJ, Kole C (2010) Genetics, genomics and breeding of sugarcane. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210. https://doi.org/10.1073/pnas.0604600103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3:1–15. https://doi.org/10.3389/fbioe.2015.00182

    Article  Google Scholar 

  • Hoang NV, Furtado A, O’Keeffe AJ, Botha FC, Henry RJ (2017) Association of gene expression with biomass content and composition in sugarcane. PLoS One 12:1–31. https://doi.org/10.1371/journal.pone.0183417

    Article  CAS  Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GM, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GR, Crivellari AC (2010) The biotechnology roadmap for sugarcane improvement. Trop Plant Biol 3(2):75–87. https://doi.org/10.1007/s12042-010-9050-5

    Article  CAS  Google Scholar 

  • Huang H, Long S, Singh V (2015) Ultra-oil producing sugarcane and sweet sorghum. AOCS Inform 26:278–282

    Google Scholar 

  • Huang H, Long S, Singh V (2016) Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane. Biofuels Bioprod Biorefin 10:299–315. https://doi.org/10.1002/bbb.1640

    Article  CAS  Google Scholar 

  • Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crop Res 89:107–122. https://doi.org/10.1016/j.fcr.2004.01.018

    Article  Google Scholar 

  • International Service for Acquisition of Agri-Biotech Applications (2013) Indonesia approves first GM sugarcane. http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=10989. Accessed 26 Jan 2019

  • Ithape DM, Maharana M, Tripathy SK (2017) Scope of genetic transformation in sugarcane: a review. Genomics Appl Biol 8(1). https://doi.org/10.5376/gab.2017.08.0001

  • Jakowitsch J, Papp I, Moscone EA, Van Der Winden J, Matzke M, Matzke AJM (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17(2):131–140. https://doi.org/10.1046/j.1365-313X.1999.00357.x

    Article  CAS  PubMed  Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co-cultivation medium are important determinants of agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29:173–183. https://doi.org/10.1007/s00299-009-0810-3

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142. https://doi.org/10.1007/s11103-016-0499-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716. https://doi.org/10.1111/pbi.12061

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43(2–3):179–188. https://doi.org/10.1023/a:1006423110134

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Hanif Z, Irshad U, Ahmad R, Yasin M, Chaudhary MF, Afroz A, Javed MT, Rashid U, Rashid H (2013) Genetic transformation of sugarcane variety HSF-240 with marker gene GUS. Int J Agric Biol 15(6):429. https://doi.org/10.1111/psyp.12327

    Article  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017a) Applications and potential of sugarcane as an energy crop. In: Agricultural research updates. Nova Science Publishers, New York, pp 1–24

    Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017b) Characterization of somaclonal variants of sugarcane on the basis of quantitative, qualitative, and genetic attributes. Pak J Bot 49(6):2429–2443

    CAS  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017c) The green fuels: evaluation, perspectives, and potential of sugarcane as an energy source. Environ Res J 10(4):381–396

    Google Scholar 

  • Khan MT, Khan IA, Yasmeen S (2018) Green biotechnology can help sustainable crop production and food security in the era of climate change. In: Climate smart agriculture: the way of farming for 21st century. Muhammad Nawaz Sharif University of Agriculture (MNSUAM), Multan

    Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. In: Pena L (ed) Transgenic plants: methods and protocols, 286th edn. Humana Press, Totowa, pp 61–78

    Google Scholar 

  • Kumar T, Khan MR, Abbas Z, Ali GM (2014a) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56:199–209

    Article  CAS  Google Scholar 

  • Kumar T, Khan MR, Jan SA, Ahmad N, Ali NN, Zia MA, Roomi S, Iqbal A, Ali GM (2014b) Efficient regeneration and genetic transformation of sugarcane with AVP1 gene. Am Eurasian J Agric Environ Sci 14:165–171

    CAS  Google Scholar 

  • Lam E, Shine J Jr, Da Silva J, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Ma J, Richard E Jr, Souza GM, Ming R (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. Glob Chang Biol Bioenergy 1:251–255. https://doi.org/10.1111/j.1757-1707.2009.01016.x

    Article  CAS  Google Scholar 

  • Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chim 7:65–90

    Article  CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster rubisco with potential to increase photosynthesis in crops. Nature 513:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lina BAR, Jonker D, Kozianowski G (2002) Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food Chem Toxicol 40:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Louie GV, Bowman ME, Tu Y, Mouradov A, Spangenberg G, Noel JP (2010) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 22(12):4114–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro ME, Barbosa MHP, Lopes FJF, Silvério FO (2011) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Routes to cellulosic ethanol. Springer, New York, pp 199–239

    Chapter  Google Scholar 

  • Lu YL, Mosier N (2008) Current technologies for fuel ethanol production from lignocellulosic plant biomass. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 161–182

    Chapter  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Maldonado A, Melgar M, Lamport P (2010) Towards much more efficient biofuel crops - can sugarcane pave the way? GM Crops 1:181–198. https://doi.org/10.4161/gmcr.1.4.13173

    Article  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Malik KB (2010) Cane and sugar production. Punjab Agricultural Research Board, Faisalabad

    Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143. https://doi.org/10.1007/s00299-004-0794-y

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Ferro J, Arruda P (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant 45:372–381

    Article  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Kapil Dev G, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32(10):1557–1574. https://doi.org/10.1007/s00299-013-1467-5

    Article  CAS  PubMed  Google Scholar 

  • McCombie WR, McPherson JD, Mardis ER (2018) Next-generation sequencing technologies. Cold Spring Harb Perspect Med:a036798. https://doi.org/10.1101/cshperspect.a036798

  • McQualter RB, Dookun-Saumtally A (2007) Expression profiling of abiotic-stress inducible genes in sugarcane. XXVI Congress of International Society of Sugar Cane Technologists, Durban. pp 878–888

    Google Scholar 

  • Metzcalf K, Hedin A (2007) Sustainable future for bioenergy and renewable products. European Plant Science Organization, Brussels

    Google Scholar 

  • Mitchell HJ (2011) Regulation of genetically modified (GM) sugar cane in Australia. In: Proceedings of 33rd Annual Conference, Australian Society of Sugarcane Technologists, Mackay. pp 1–8

    Google Scholar 

  • Mohan C (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1–5. https://doi.org/10.3389/fpls.2016.01542

    Article  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    Article  CAS  PubMed  Google Scholar 

  • Ndimande S (2014) Increasing cellulosic biomass in sugarcane. Dissertation, Stellenbosch University,

    Google Scholar 

  • OECD-FAO (2016) OECD-FAO agricultural outlook 2016–2025. OECD Publishing, Rome

    Book  Google Scholar 

  • Ohlrogge J, Chapman K (2011) The seeds of green energy: expanding the contribution of plant oils as biofuels. Biochemist (London) 33:34–38

    Google Scholar 

  • Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229:115

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Papes F, Gerhardt IR, Arruda P (2015) Cambium/xylem-preferred promoters and uses thereof. U.S. Patent 9,029,637, 12 May 2015

    Google Scholar 

  • Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34(1):31

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P (2010) Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves. J Crop Sci Biotechnol 13:177–182

    Article  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou X-R, Liu Q, Mansour MP, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One 7:e35214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay E (2013) In vitro culture and genetic transformation of selected ancestral and commercial sugarcane germplasm. Dissertation, University of KwaZulu-Natal

    Google Scholar 

  • Preto R (2018) FDA approves Brazilian genetically modified sugarcane. In: Folha São Paulo. https://www1.folha.uol.com.br/internacional/en/business/2018/08/1978188-fda-approves-brazilian-genetically-modified-sugarcane.shtml. Accessed 26 Jan 2019

  • Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87:5–15

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  • Rani K, Sandhu SK, Gosal SS (2012) Genetic augmentation of sugarcane through direct gene transformation with Osgly II gene construct. Sugar Tech 14(3):229–236. https://doi.org/10.1007/s12355-012-0149-x

    Article  CAS  Google Scholar 

  • Rathus C, Birch RG (1992) Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci 82(1):81–89. https://doi.org/10.1016/0168-9452(92)90010-J

    Article  CAS  Google Scholar 

  • Raza G, Ali K, Ashraf MY, Mansoor S, Javid M, Asad S (2016) Overexpression of an H+-PPase gene from Arabidopsis in sugarcane improves drought tolerance, plant growth, and photosynthetic responses. Turkish J Biol 40:109–119

    Article  CAS  Google Scholar 

  • Reis RR, da Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior AÔ, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, de Carvalho JFC, de Sousa CAÔF, Nepomuceno AL, Kobayashi AK, HBC M (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221–222:59–68. https://doi.org/10.1016/j.plantsci.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  • Reuters (2017) Brazil approves world’s first commercial GM sugarcane: developer CTC. https://www.reuters.com/article/us-brazil-sugar-gmo/brazil-approves-worlds-first-commercial-gm-sugarcane-developer-ctc-idUSKBN18Z2Q6. Accessed 27 Oct 2018

  • Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6:e16416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez RG, Karhumaa K, Fonseca C, Nogué VS, Almeida JRM, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Saravanan S, Kumar KK, Raveendran M, Sudhakar D, Arul L, Kokiladevi E, Raguchander T, Mani S, Balasubramanian P (2018) Genetic engineering of sugarcane for drought and salt tolerant transgenic plants expressing the BcZAT12 gene. Int J Curr Microbiol Appl Sci 7:1594–1613. https://doi.org/10.20546/ijcmas.2018.707.188

    Article  Google Scholar 

  • Scortecc KC, Creste S, Calsa T, Xavier MA, Landell MG, Figueira A, Benedito VA (2012) Challenges, opportunities and recent advances in sugarcane breeding. In: Plant breeding. IntechOpen, London. https://doi.org/10.5772/28606

    Chapter  Google Scholar 

  • Shanthi RM, Bhagyalakshmi KV, Hemaprabha G, Alarmelu S, Nagarajan R (2008) Relative performance of the sugarcane families in early selection stages. Sugar Tech 10:114–118

    Article  Google Scholar 

  • Shih PM, Liang Y, Loqué D (2016) Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. Plant J 87:103–117. https://doi.org/10.1111/tpj.13176

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar P, Tiwari N, Rastogi J, Singh S (2013) Current status of sugarcane transgenic: an overview. Adv Genet Eng 2(112):2169–0111. https://doi.org/10.4172/2169-0111.1000112

    Article  CAS  Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM, Haricharan N, Ramgareeb S, Huckett BI (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 25(10):1016–1023. https://doi.org/10.1007/s00299-006-0148-z

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792. https://doi.org/10.1126/science.1189268

    Article  CAS  PubMed  Google Scholar 

  • Souza GM, Van Sluys M (2014) Sugarcane genomics and biotechnology: state of the art, challenges and actions. In: Cortez AB (ed) Sugarcane bioethanol – R&D for productivity and sustainability. Edgard Blücher Publishing, São Paulo, pp 325–332

    Google Scholar 

  • Srinivasan C, Vasil IK (1986) Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J Plant Physiol 126(1):41–48. https://doi.org/10.1016/S0176-1617(86)80214-0

    Article  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    Article  CAS  PubMed  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. https://doi.org/10.1038/nrg2336

    Article  CAS  PubMed  Google Scholar 

  • Stone R (2008) China plans $3.5 billion GM crops initiative. Science 321:1279

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P (2010) Biotechnological interventions in sugarcane improvement: strategies, methods and progress. BARC Newsl 316:47–53

    Google Scholar 

  • Suprasanna P, Patade VY, Desai NS, Devarumath RM, Kawar PG, Pagariya MC, Ganapathi A, Manickavasagam M, Babu KH (2011) Biotechnological developments in sugarcane improvement: an overview. Sugar Tech 13:322–335. https://doi.org/10.1007/s12355-011-0103-3

    Article  CAS  Google Scholar 

  • Taparia Y, Fouad WM, Gallo M, Altpeter F (2012a) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitr Cell Dev Biol Plant 48:15–22. https://doi.org/10.1007/s11627-011-9389-9

    Article  CAS  Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012b) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111(2):131–141. https://doi.org/10.1007/s11240-012-0177-y

    Article  CAS  Google Scholar 

  • Tew TL (1980) Genetic engineering for greater energy efficiency in sugarcane. In: Conference on renewable energy technology. 5 Dec 1980, Honolulu

    Google Scholar 

  • Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Genetic improvement of bioenergy crops. Springer, Berlin, pp 273–294

    Google Scholar 

  • Van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. https://doi.org/10.3389/fpls.2013.00107

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, El Tahchy A, Liu Q, Zhou X, Shrestha P, Divi UK, Ral J, Mansour MP, Nichols PD, James CN (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005) Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Aust J Agric Res 56:57–68

    Article  CAS  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  CAS  PubMed  Google Scholar 

  • Wang ZZ, Zhang SZ, Yang BP, Li YR (2005) Trehalose synthase gene transfer mediated by agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech 7(1):49–54. https://doi.org/10.1007/BF02942417

    Article  CAS  Google Scholar 

  • Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:45905

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172. https://doi.org/10.1016/j.copbio.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117. https://doi.org/10.1111/j.1467-7652.2006.00224.x

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 3(3):135–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu TA, Yeh SD, Yang JS (2003) Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. Plant Cell Tissue Organ Cult 74(2):169–178. https://doi.org/10.1023/A:1023906309446

    Article  CAS  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  CAS  PubMed  Google Scholar 

  • Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F (2016) Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J 14:661–669. https://doi.org/10.1111/pbi.12411

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang B, Feng C, Chen R, Luo J, Cai W, Liu F (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol 48:453–459

    Article  CAS  Google Scholar 

  • Zhang H, Li H, Miao X (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20:15–30

    Article  PubMed  CAS  Google Scholar 

  • Zhangsun D, Luo S, Chen R, Tang K (2007) Improved agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia (Bratisl) 62(4):386. https://doi.org/10.2478/s11756-007-0096-2

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.T., Khan, I.A., Yasmeen, S. (2019). Genetically Modified Sugarcane for Biofuels Production: Status and Perspectives of Conventional Transgenic Approaches, RNA Interference, and Genome Editing for Improving Sugarcane for Biofuels. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_4

Download citation

Publish with us

Policies and ethics