Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 258))

  • 1402 Accesses

Abstract

The need for materials with higher performances is a strategic issue in engineering. Composite materials, i.e., combining at least two constituents with desired properties like mechanical resistance and lightness, have been developed and applied in many fields of engineering, and are now routinely used in many applications, including automotive industry, aircrafts, drones, biomedicals, wind turbines, sports, and leisure, etc. (see reviews in [1,2,3,4,5,6]). On the other hand, heterogeneous materials are found in many other engineering or science fields, such as cementitious materials in civil engineering or biomechanics. More recently, the progress in manufacturing techniques have allowed producing very complex materials like metallic foams (see Fig. 1.1a), or even allowed producing materials with “on demand” microstructures [7, 8] via 3D printing techniques, see Fig. 1.1b. Developing new materials involves synthesis, manufacturing, and testing for certification. This process is long and costly, and usually only involves a “trial and error” procedure, rather than a clear optimization methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the present monograph, we will restrict the presentation to computational homogenization based on finite elements. For techniques based on Fast Fourier Transform, the interested reader can refer to [20].

References

  1. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A: Appl Sci Manuf 30(12):1445–1461

    Article  Google Scholar 

  2. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930

    Article  Google Scholar 

  3. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  Google Scholar 

  4. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM J Miner Met Mater Soc 58(11):80–86

    Article  Google Scholar 

  5. Chawla KK, Chawla N (2014) Metal matrix composites: automotive applications. Encycl Automot Eng

    Google Scholar 

  6. Gay D (2014) Composite materials: design and applications. CRC Press, Boca Raton

    Google Scholar 

  7. Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643

    Article  Google Scholar 

  8. Quan Z, Larimore Z, Wu A, Yu J, Qin X, Mirotznik M, Suhr J, Byun J-H, Oh Y, Chou T-W (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148

    Article  Google Scholar 

  9. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17

    Article  Google Scholar 

  10. Buryachenko V (2007) Micromechanics of heterogeneous materials. Springer Science & Business Media, New York

    Book  Google Scholar 

  11. Milton GW (2002) Theory of composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Bornert M (2008) Homogenization in mechanics of materials. ISTE, Newport Beach

    Google Scholar 

  13. Auriault J-L, Boutin C, Geindreau C (2009) Homogénéisation de phénomènes couplés en milieux hétérogènes. Hermès Science Publications

    Google Scholar 

  14. Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, Berlin

    Google Scholar 

  15. Suquet P (2014) Continuum micromechanics, vol 377. Springer, Berlin

    Google Scholar 

  16. Dvorak G (2013) Micromechanics of composites materials. Springer, New York

    Book  Google Scholar 

  17. Li S, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific Publication, Singapore

    Google Scholar 

  18. Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1(2):152–164

    Article  Google Scholar 

  19. Suquet P, Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds) Homogenization techniques for composite materials. Lecture notes in physics, vol 272

    Google Scholar 

  20. Michel J-C, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

    Article  MathSciNet  Google Scholar 

  21. Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation. Aerosp Sci Technol 9:36–51

    Google Scholar 

  22. Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454

    Google Scholar 

  23. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464

    Article  Google Scholar 

  24. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  Google Scholar 

  25. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182

    Article  Google Scholar 

  26. Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(08):610–616

    Article  Google Scholar 

  27. Schroeder J, Labusch M, Keip M-A (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280

    Article  Google Scholar 

  28. Patel B, Zohdi TI (2016) Numerical estimation of effective electromagnetic properties for design of particulate composites. Mater Des 94:546–553

    Article  Google Scholar 

  29. Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196

    Article  Google Scholar 

  30. Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C (2011) Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem Concr Res 41(5):542–556

    Article  Google Scholar 

  31. Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737

    Article  Google Scholar 

  32. Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178

    Article  Google Scholar 

  33. Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization–localization for propagating discontinuities using X-FEM. Comput Methods Appl Mech Eng 102(3–4):496–527

    MathSciNet  MATH  Google Scholar 

  34. Oliver J, Caicedo M, Roubin E, Huespe AE, Hernández JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427

    Article  MathSciNet  Google Scholar 

  35. Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82

    Article  MathSciNet  Google Scholar 

  36. (2018) http://www.zset-software.com/

  37. Digimat software. http://www.e-xstream.com/products/digimat/about-digimat

  38. Terada K et al (2017) http://www.cybernet.co.jp/ansys/product/lineup/multiscale/en/multiscale/

  39. Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer Science & Business Media, New York

    Google Scholar 

  40. Ghosh S, Dimiduk DM (2011) Computational methods for microstructure-property relationships. Springer, Berlin

    Google Scholar 

  41. Fish J (2013) Practical multiscaling. Wiley, New York

    Google Scholar 

  42. Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINES

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Yvonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yvonnet, J. (2019). Introduction. In: Computational Homogenization of Heterogeneous Materials with Finite Elements. Solid Mechanics and Its Applications, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-030-18383-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18383-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18382-0

  • Online ISBN: 978-3-030-18383-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics