Skip to main content
  • 611 Accesses

Abstract

As was analysed in the previous chapter, once we find separation coordinates for a Liouville integrable system, we can integrate the system by quadratures through an appropriate separation relations. The fundamental problem in the Hamilton–Jacobi method is the systematic construction of transformation from some “natural” coordinates to separation coordinates. As was demonstrated in the previous chapter, such coordinates like Cartesian, spherical or cylindrical are separation coordinates only in very special cases. In general, separation coordinates are much less obvious and completely unpredictable. So the question about the existence of a systematic method for the construction of separation coordinates is very important. Indeed, for many decades of development of the separability theory, the method did not exist. Only recently, at the end of the twentieth century, after more than 100 years of efforts, a few different constructive methods were suggested. Obviously, the knowledge of all constants of motion for a given Liouville integrable system is not enough. Some extra information is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonowicz, M., Rauch-Wojciechowski, S.: How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials. J. Math. Phys. 33, 2115 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  2. Antonowicz, M., Fordy, A.P., Rauch-Wojciechowski, S.: Integrable stationary flows: Miura maps and bi-Hamiltonian structures. Phys. Lett. A 124, 143 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ay, A., Gürses, M., Zheltukhin, K.: Hamiltonian equations in \({\mathbb {R}}^{3}\). J. Math. Phys. 44(12), 5688 (2003)

    Google Scholar 

  4. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University, Cambridge (2003)

    Book  Google Scholar 

  5. Błaszak, M.: On separability of bi-Hamiltonian chain with degenerate Poisson structures. J. Math. Phys. 39, 3213 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  6. Błaszak, M.: Multi-Hamiltonian theory of dynamical systems. In: Texts and Monographs in Physics. Springer, Berlin (1998)

    Google Scholar 

  7. Błaszak, M.: Bi-Hamiltonian separable chains on Riemannian manifolds. Phys. Lett. A 243, 25 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Błaszak, M.: Theory of separability of multi-Hamiltonian chains. J. Math. Phys. 40, 5725 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Błaszak, M.: From bi-Hamiltonian geometry to separation of variables: stationary Harry-Dym and the KdV dressing chain. J. Nonl. Math. Phys. 9(1), 1 (2002)

    Article  MathSciNet  Google Scholar 

  10. Błaszak, M.: Presymplectic representation of bi-Hamiltonian chains. J. Phys. A Math. Gen. 37(50), 11971 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. Błaszak, M.: Bi-Hamiltonian representation of Stäckel systems. Phys. Rev. E 79, 056607 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Błaszak, M.: Bi-presymplectic representation of Liouville integrable systems and related separability theory. Stud. Appl. Math. 126, 319 (2011)

    Article  MathSciNet  Google Scholar 

  13. Błaszak, M., Sergyeyev, A.: Natural coordinates for a class of Benenti systems. Phys. Lett. A 365, 28 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Błaszak, M., Sergyeyev, A.: Generalized Stäckel systems. Phys. Lett. A 375(27), 2617 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Błaszak, M., Goürses, M., Zheltukhin, C.: Bi-presymplectic chains of co-rank 1 and related Liouville integrable systems. J. Phys. A Math. Theor. 42, 285204 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Brouzet, R., Caboz, R., Rabenivo, J.: Quasi-bi-Hamiltonian systems and separability. J. Phys. A Math. Gen. 29, 2069 (1996)

    Article  ADS  Google Scholar 

  17. Coodonovsky, D.V., Choodonovsky, G.V.: Completely integrable class of mechanical systems connected with Korteweg-de Vries and multicomponent Schrödinger equations. Lett. Nuovo Cimento 22, 47 (1978)

    Article  MathSciNet  Google Scholar 

  18. Crampin, M.: Projectively equivalent Riemannian spaces as quasi-bi-Hamiltonian systems. Acta Appl. Math. 77, 237 (2003)

    Article  MathSciNet  Google Scholar 

  19. Crampin, M., Sarlet, W.: A class of nonconservative Lagrangian systems on Riemannian manifolds. J. Math. Phys. 42, 4313 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  20. Crampin, M., Sarlet, W.: Bi-quasi-Hamiltonian systems. J. Math. Phys. 43, 2505 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  21. Damianou, P.A.: Multiple Hamiltonian structures for Toda-type systems. J. Math. Phys. 35, 5511 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  22. Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B., Legkin, D.V.: Linear r-matrix algebra for systems separable in parabolic coordinates. Phys. Lett. A 180, 208 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  23. Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B., Tsiganov, A.V.: Linear r-matrix algebra for classical separable systems. J. Phys. A Gen. Math. 27, 567 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  24. Falqui, G., Pedroni, M.: On a Poisson reduction for Gel’fand-Zakharevich manifolds. Rep. Math. Phys. 50, 395 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  25. Falqui, G., Pedroni, M.: Separation of variables for Bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139 (2003)

    Article  MathSciNet  Google Scholar 

  26. Falqui, G., Magri, F., Pedroni, M.: Bihamiltonian geometry and separation of variables for Toda lattices. J. Nonlinear Math. Phys. 8(Suppl.), 118 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  27. Fedorov, Yu. N.: Integrable systems, Poisson pencils and hipperelliptic Lax pairs. Regul. Chaotic Dyn. 5, 171 (2000)

    Article  MathSciNet  Google Scholar 

  28. Flaschka, H.: The Toda lattice I: Existence of integrals. Phys. Rev. B 9, 1924 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  29. Gel’fand, I.M., Zakharevich, I.: On the local geometry of a bi-Hamiltonian structure. In: The Gel’fand Mathematical Seminars 1990–1992 (eds.) Corwin, L. et. al., p. 51 Birkhäuser, Boston (1993)

    Google Scholar 

  30. Gel’fand, I.M., Zakharevich, I.: Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures. Selecta Math. (N.S) 6, 131 (2000)

    Google Scholar 

  31. Gümral, X, Nutku, Y.: Poisson structure of dynamical systems with three degrees of freedom. J. Math. Phys. 34, 5691 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ibort, A., Magri, F., Marmo, G.: Bihamiltonian structures and Stäckel separability. J. Geom. Phys. 33, 210 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  33. Jacobi, C.G.: Vörlesungen über Dynamik, vol. 9, pp. 26–29. Georg Reimer, Berlin (1866)

    Google Scholar 

  34. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré Phys. Theor. 53, 35 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Kuznetsov, V.B., Nijhoff, F.W., Sklyanin, E.: Separation of variables for the Ruijsenaars system. Commun. Math. Phys. 189, 855 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  36. Lundmark, H.: Higher-dimensional integrable Newton systems with quadratic integrals of motion. Stud. Appl. Math. 110, 257 (2003)

    Article  MathSciNet  Google Scholar 

  37. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  38. Magri, F.: Eight lectures on Integrable Systems. In: Integrability of Nonlinear Systems, Kosmann-Schwarzbach, Y. et al. (eds.), Lecture notes in Physics, vol. 495. Springer, Berlin (1997)

    Google Scholar 

  39. Manakov, S.V.: Remarks on the integrals of the Euler equations of the n-dimensional heavy top. Funct. Anal. Appl. 10, 93 (1976)

    Google Scholar 

  40. Marciniak, K., Błaszak, M.: Separation of variables in quasi-potential systems of bi-cofactor form. J. Phys. A Math. Gen. 35, 2947 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  41. Marciniak, K, Błaszak, M.: Non-Hamiltonian systems separable by Hamilton–Jacobi method. J. Geom. Phys. 58, 557 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. Marciniak, K., Błaszak, M.: Flat coordinates of flat Stäckel systems. Appl. Math. Comput. 268, 706 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Marciniak, K., Rauch-Wojciechowski, S.: Two families of nonstandard Poisson structures for Newton equations. J. Math. Phys. 39, 6366 (1998)

    Article  MathSciNet  Google Scholar 

  44. Morosi, C., Tondo, G.: Quasi-bi-Hamiltonian systems and separability. J. Phys. A Math. Gen. 30, 2799 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  45. Moser, J.: Various aspects of integrable Hamiltonian systems. Prog. Math. 8, 23 (1980)

    MathSciNet  MATH  Google Scholar 

  46. Panasyuk, A.: Veronese webs for bihamiltonian structures of higher corank. In: Urbański, P., Grabowski, J. (eds.), Poisson Geometry (Warsaw 1998). Banach Center Publications 51, Polish Academy of Sciences, Warsaw (2000)

    Google Scholar 

  47. Panasyuk, A.: Compatible lie brackets: Towards a classifcation. J. Lie Theory 24, 561 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Pedroni, M.: Bi-Hamiltonian aspects of the separability of the Neumann system. Theor. Math. Phys. 133, 1722 (2002)

    Article  MathSciNet  Google Scholar 

  49. Ratiu, P.S.: The C. Neumann problem as a completely integrable system on an adjoint orbit of a Lie algebra. Trans. Amer. Math. Soc. 264, 321 (1981)

    Article  MathSciNet  Google Scholar 

  50. Rauch-Wojciechowski, S.: A bi-Hamiltonian formulation for separable potentials and its application to the Kepler problem and the Euler problem of two centers of gravitation. Phys. Lett. A 160, 149 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  51. Rauch-Wojciechowski, S., Marciniak, K., Lundmark, H.: Quasi-Lagrangian systems of Newton equations. J. Math. Phys. 40, 6366 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  52. Shabat, A.B.: The infinite-dimensional dressing dynamical system. Inverse Prob. 6, 303 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  53. Sklyanin, E.: Separation of variables in the Gaudin model. J. Sov. Math. 47, 2473 (1989)

    Article  MathSciNet  Google Scholar 

  54. Sklyanin, E: Separation of variables. New trends. Prog. Theor. Phys. Suppl. 118, 35 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  55. Ten Eikelder, H.M.M.: On the local structure of recursion operators. Proc. Kon. Ned. Akad. A 89, 386 (1986)

    Google Scholar 

  56. Turiel, F.J.: Classification locale d’un couple de formes symplectiques Poisson-compatibles. C.R. Acad. Sci. Paris Ser. I Math. 308, 575 (1989)

    Google Scholar 

  57. Veselov, A., Shabat, A.B.: Dressing chain and spectral theory of Schrödinger operator. Funktsional. Anal. i Prilozhen. 27, 1 (1993)

    Article  MathSciNet  Google Scholar 

  58. Wojciechowski, S.: Review of the recent results on integrability of natural Hamiltonian systems. In: Systèmes dynamiques non linéaires: intégrabilité et comportement qualitatif, pp. 294–327. Sém. Math. Sup., 102. Presses Univ. Montréal, Montreal, QC (1986)

    Google Scholar 

  59. Zeng, Y., Ma, W.X.: Separation of variables for soliton equations via their binary constrained flows. J. Math. Phys. 40, 6526 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  60. Zeng, Y., Ma, W.X.: The construction of canonical separated variables for binary constrained AKNS flow. Physica A 274, 505 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Błaszak, M. (2019). Classical Separability Theory. In: Quantum versus Classical Mechanics and Integrability Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-18379-0_5

Download citation

Publish with us

Policies and ethics