Skip to main content

Design and Development of Small Molecules from Somatic, Stem Cell Reprogramming, and Therapy

  • Chapter
  • First Online:
Book cover Essentials of Bioinformatics, Volume II

Abstract

Nuclear reprogramming changes the cell fate and plays a vital role in obtaining pluripotent stem cells. It is difficult to explain clear molecular mechanism of nuclear reprogramming. Direct reprogramming of somatic cell types into desired cell types can be achieved by using specific genes and small molecules. Computational methods and molecular modeling may provide the insight to explain the landscape of the nuclear reprogramming and stem cell pluripotency. The structural and functional information of protein is required for annotation. In the absence of experimental structures, computational methods like homology modeling will be employed to decipher the protein structure and active sites. By fold identification and binding site-based ligand association, functional annotation will be carried out. Molecular docking and pharmacophore modeling are used to optimize the lead compounds or small molecules for direct conversion of somatic cell types and stem cells into specific cell types, which also help in identification of the better targets that aid in drug design process in cell-based therapy and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Germ line stem cells:

GSCs

Glial cell line-derived neurotrophic factor:

GDNF

Induced pluripotent stem cells:

(iPS) cells

Multipotent germ line stem cells:

mGSs

Spermatogonial stem cells:

SSCs

References

  • Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins: Structure, Function, and Bioinformatics 69(1):139–159

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  Google Scholar 

  • Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, Rosenthal A, Hefti F (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373(6512):339

    Article  CAS  Google Scholar 

  • Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164(1):15–24

    Article  CAS  Google Scholar 

  • Bowenkamp KE, Hoffman AF, Gerhardt GA, Henry MA, Biddle PT, Hoffer BJ, Granholm AC (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 355(4):479–489

    Article  CAS  Google Scholar 

  • Cochrane GR, Galperin MY (2009) The 2010 nucleic acids research database issue and online database collection: a community of data resources. Nucleic Acids Res 38(suppl_1):D1–D4

    Article  Google Scholar 

  • de Rooij DG (2006) Rapid expansion of the spermatogonial stem cell tool box. Proc Natl Acad Sci 103(21):7939–7940

    Article  Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: InInternational workshop on algorithms in bioinformatics. Springer, Berlin, Heidelberg, pp 185–200

    Chapter  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Humana press, pp 571–607. New York, USA

    Chapter  Google Scholar 

  • Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):17430–17435

    Article  CAS  Google Scholar 

  • Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279(3):1181–1190

    CAS  PubMed  Google Scholar 

  • Hess RA, Cooke PS, Hofmann MC, Murphy KM (2006) Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 5(11):1164–1170

    Article  CAS  Google Scholar 

  • Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182(1):107–111

    Article  CAS  Google Scholar 

  • Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT (2008) Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22(2):374–382

    Article  CAS  Google Scholar 

  • Hudson J, Granholm AC, Gerhardt GA, Henry MA, Hoffman A, Biddle P, Leela NS, Mackerlova L, Lile JD, Collins F, Hoffer BJ (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36(5):425–432

    Article  CAS  Google Scholar 

  • Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT (2010) Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 316(5):747–761

    Article  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012

    Article  CAS  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773

    Article  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494

    Article  CAS  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778

    Article  CAS  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(suppl_2):W89–W93

    Article  CAS  Google Scholar 

  • Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45

    Article  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, De Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics. 50(3):437–450

    Article  CAS  Google Scholar 

  • Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(suppl_2):W229–W232

    Article  CAS  Google Scholar 

  • Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493

    Article  CAS  Google Scholar 

  • Sauer H, Rosenblad C, Björklund A (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci 92(19):8935–8939

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(suppl_2):W363–W367

    Article  CAS  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278(5346):2130–2133

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Tokugawa K, Yamamoto K, Nishiguchi M, Sekine T, Sakai M, Ueki T, Chaki S, Okuyama S (2003) XIB4035, a novel nonpeptidyl small molecule agonist for GFRα-1. Neurochem Int 42(1):81–86

    Article  CAS  Google Scholar 

  • VLife MD (2008) 3.5 Molecular design suite. VLife Sciences Technologies, Pune

    Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8(2):127–134

    Article  CAS  Google Scholar 

  • Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465(7299):704

    Article  CAS  Google Scholar 

  • Zechner U, Nolte J, Wolf M, Shirneshan K, Hajj NE, Weise D, Kaltwasser B, Zovoilis A, Haaf T, Engel W (2009) Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells. Mol Hum Reprod 15(6):345–353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Bioinformatics Infrastructure facility at National Institute of Technology, Rourkela funded by DBT for providing the facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guttula, P.K., Gupta, M.K. (2019). Design and Development of Small Molecules from Somatic, Stem Cell Reprogramming, and Therapy. In: Shaik, N., Hakeem, K., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-030-18375-2_10

Download citation

Publish with us

Policies and ethics