Skip to main content

Integrated Pest Management Approaches

  • Chapter
  • First Online:

Abstract

Integrated pest management (IPM) is an internationally recognized approach to pest and disease control. IPM embraces diversity, is knowledge intensive, and varies by crop, scale, and geographical location. All farmers practice IPM to some degree, including the cultural control techniques that underpin all good farming practices. In reality, most farming practice is neither IPM nor non-IPM, but can be defined at a point along the so-called IPM continuum from chemically intensive systems to bio-intensive systems. IPM was initially conceptualized to reduce dependence on pesticides and their effects on the environment. It has been built into virus control strategies from the beginning of plant virology because of the known in vivo insensitivity of viruses to chemical agents. Several methodologies are available for implementing IPM for Bemisia tabaci populations: chemical control with selective insecticides, biological control, crop plant resistance, and physical/mechanical methods. Insecticides, by their poisonous nature, are often harmful to natural enemies and therefore are disruptive to overall pest management. However, the more modern materials that are effective for B. tabaci control are relatively specific to the target pests and therefore less harmful to natural enemies and the environment; consequently, they are also more suitable for integrative combination with other methods. Conventional IPM technologies, such as intercropping, will yield mixed results with little, if any, beneficial impact on pest population in crops. This chapter reviews the known measures used for reducing populations of B. tabaci, advocating the view that only a comprehensive approach incorporating IPM programs will offer effective and sustainable strategies for managing whiteflies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antignus Y (2000) Manipulation of wavelength dependent behavior of insects: an IPM tool to impede epidemics and restrict spread of insect-borne viruses. Virus Res 71:213–220

    Article  CAS  Google Scholar 

  • Antignus Y (2007) The management of tomato yellow leaf curl virus in greenhouses and the open field, a strategy of manipulation. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 263–278

    Chapter  Google Scholar 

  • Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci Gennadius from different geographic regions. Ann Appl Biol 125:311–325

    Article  Google Scholar 

  • Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RN, De Barro P, Frohlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306–1319

    Article  CAS  Google Scholar 

  • Brown JK (2007a) The Bemisia tabaci complex: genetic and phenotypic variability drives begomovirus spread and virus diversification. APSnetvFeature

    Google Scholar 

  • Brown JK (2007b) The Bemisia tabaci complex: genetic and phenotypic variation and relevance to TYLCV-vector interactions. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 25–56

    Chapter  Google Scholar 

  • Brown JK, Bird J, Banks G, Kiesler SM et al (1995a) First report of an epidemic in tomato caused by two whitefly-transmitted geminiviruses in Puerto Rico. Plant Dis 79:1250

    Article  Google Scholar 

  • Brown JK, Bird J, Banks G, Kiesler SM et al (1995b) First report of an epidemic in tomato caused by two whitefly-transmitted geminiviruses in Puerto Rico. Plant Dis 79:1250

    Article  Google Scholar 

  • Byrne DN, Bellows TS (1991) Whiteflies biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Castle SJ, Palumbo JC, Prabhaker N, Horowitz AR, Denholm I (2010) Ecological determinants of Bemisia tabaci resistance to insecticides. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht

    Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  CAS  Google Scholar 

  • Chu D, Wan FH, Zhang YJ, Brown JK (2010) Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ Entomol 39:1028–1036

    Article  Google Scholar 

  • Cohen S (1982) Control of whitefly vectors of viruses by color mulches. In: Harris KF, Maramorosch K (eds) Pathogens, vectors and plant diseases, approaches to control. Academic, New York, pp 45–56

    Chapter  Google Scholar 

  • Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. In: Harris KS (ed) Advances in disease vector research, vol 10. Springer-Verlag, New York, pp 259–288

    Chapter  Google Scholar 

  • Cohen S, Berlinger MJ (1986) Transmission and cultural control of whitefly-borne viruses. Agric Ecosyst Environ 17:89–97

    Article  Google Scholar 

  • Cohen S, Melamed-Madjar V (1978) Prevention by soil mulching of the spread of tomato yellow leaf curl virus transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Israel. Bull Entomol Res 68:465–470

    Article  Google Scholar 

  • Coombe PE (1982) Visual behavior of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251

    Article  Google Scholar 

  • Costa H, Brown JK (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci and the association of one population with silver leaf symptom induction. Entomol Exp Appl 61:211–219

    Article  Google Scholar 

  • Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the ‘A’ and ‘B’ biotypes of Bemisia tabaci. Insect Sci Appl 14:255–266

    Google Scholar 

  • Csizinszky AA, Schuster DJ, Kring JB (1995) Color mulches influence yield and insect pest populations in tomatoes. J Am Soc Hortic Sci 120:778–784

    Article  Google Scholar 

  • De Barro PJ, Trueman JWH, Frohlich DR (2005) Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world. Bull Entomol Res 95:193–203

    Article  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale A (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  Google Scholar 

  • Dobson HE (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect–plant interactions, vol 5. CRC Press, Boca Raton, FL, pp 47–81

    Google Scholar 

  • Fargette D, Konate G, Fauquet C, Muller E, Peterschmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260

    Article  CAS  Google Scholar 

  • Gillespe DR, Quiring D (1987) Yellow sticky traps for detecting and monitoring greenhouse whitefly (Homoptera: Aleyrodidae) adults on greenhouse tomato crops. J Econ Entomol 80:675–679

    Article  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  CAS  Google Scholar 

  • Guirao P, Beitia F, Cenis JL (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 87:587–593

    Article  Google Scholar 

  • Hequet E, Henneberry TJ, Nichols RL (eds.) (2007) Sticky cotton: causes, effects, and prevention. USDA-ARS Technical Bulletin No 1915

    Google Scholar 

  • Hilje L, Costa HS, Stansly PA (2001) Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot 20:801–812

    Article  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  Google Scholar 

  • Horowitz AR, Denholm I, Gorman K, Cenis JL, Kontsedalov S, Ishaaya I (2003) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31:94–98

    Article  Google Scholar 

  • Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225

    Article  CAS  Google Scholar 

  • Horowitz AR, Denholm I, Morin S (2007) Resistance to insecticides in the TYLCV vector, Bemisia tabaci. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 305–325

    Chapter  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Article  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  • Macdowall FDH (1972) Phototactic action spectrum for whitefly and the question of colour vision. Can Entomol 104:299–307

    Article  Google Scholar 

  • Matteson N, Terry LI (1992) Response to colour by male and female Frankliniella occidentalis. Entomol Exp Appl 63:187–201

    Article  Google Scholar 

  • Moericke V (1955) U8 on the lifestyle of the winged leaf louse (Aphidina) with special consideration of behavior in the country. Z Angew Entomol 37:29–91

    Article  Google Scholar 

  • Mound L (1962) Studies on the olfaction colour sensitivity of Bemisia tabaci Genn. Aleyrodidae. Entomol Exp Appl 5(2):99–104

    Article  Google Scholar 

  • Mound LA, Halsey SH (1978) Whitefly of the world: a systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History), Chichester

    Google Scholar 

  • Natwick ET, Durazo A III (1985) Polyester covers protect vegetables from whiteflies and virus disease. Calif Agric 39:21–22

    Google Scholar 

  • Natwick E, Laemmlen FF (1993) Protection from phytophagous insects and virus vectors in honeydew melons using row covers. Flo Entomol 76:120. https://doi.org/10.2307/3496020

    Article  Google Scholar 

  • Nitzany FE, Geisenberg H, Koch B (1964) Tests for the protection of cucumbers from a whitefly-borne virus. Phytopathology 54:1059–1061

    Google Scholar 

  • Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723

    Article  Google Scholar 

  • Orozco-Santos M, Perez-Zamora O, Lopez-Arriaga M (1995) Floating row cover and transparent mulch to reduce insect population, virus diseases and increase yield in cantaloupe. Fla Entomol 78:493–501

    Article  Google Scholar 

  • Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765

    Article  CAS  Google Scholar 

  • Perring TM (2001) The Bemisia tabaci species complex. Crop Prot 20:725–737

    Article  Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364

    Article  Google Scholar 

  • Sánchez-Campos S, Navas-Castillo J, Camero R, Saria C, Díaz JA, Moriones E (1999) Displacement of Tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-is in tomato epidemics in Spain. Phytopathology 89:1038–1043

    Article  Google Scholar 

  • Stansly PA, Naranjo SE (eds) (2010) Bemisia: bionomics and management of a global pest. Springer, Dordrecht

    Google Scholar 

  • Stern VM, Smith RF, van den Bosch R, Hagen KS (1959) The integrated control concept. Hilgardia 29:81–101

    Article  CAS  Google Scholar 

  • Terry LI (1997) Host selection, communication and reproductive behaviour. In: Lewis T (ed) Thrips as crop pests. CAB International, New York, pp 65–118

    Google Scholar 

  • Thresh JM, Cooter RJ (2005) Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol 54:587–614

    Article  Google Scholar 

  • Vaishampayan SM, Kogan M, Waldbauer GP, Wooley JT (1975a) Spectral specific responses in the visual behaviour of the greenhouse whitefly, Trialeurodes 6aporariorum (Homoptera: Aleurodidae). Entomol Exp Appl 18:344–356

    Article  Google Scholar 

  • Vaishampayan SM, Waldbauer GP, Kogan M (1975b) Visual and olfactory responses in orientation to plants by the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleurodidae). Entomol Exp Appl 18:412–422

    Article  Google Scholar 

  • Webb SE, Linda SB (1992) Evaluation of spun-bounded polyethylene row covers as a method of excluding insects and viruses affecting fall-grown squash in Florida. J Econ Entomol 85:2344–2352

    Article  Google Scholar 

  • Xu J, De Barro PJ, Liu SS (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res 100:359–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riyaz, S.U.M., Kathiravan, K. (2019). Integrated Pest Management Approaches. In: Kumar, R. (eds) Geminiviruses. Springer, Cham. https://doi.org/10.1007/978-3-030-18248-9_12

Download citation

Publish with us

Policies and ethics