Skip to main content

Geminivirus Resistance Strategies

  • Chapter
  • First Online:
Geminiviruses

Abstract

Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these viruses is one of the major challenges faced by both plant pathologists and biotechnologists. In the past, most of these strategies follow the conceptual development ranging from coat protein-mediated restricted viral propagation to the expression of mutant or truncated viral proteins that interfere with virus infection, or RNA molecule-mediated gene silencing approach transcription of viral RNA sequences that silence the expression of virus genes. However much of the progress has been made so far in this direction observes limited success in field, but still research is running and new approaches such as CRISPR/Cas9 have found space in laboratories. To date, no comparative data has been published or available that examines the merit of different approaches which have been used against this class of viruses. There is a common belief among the geminivirologists across the globe about the recombination and mutation capacity as the main reason for the appearance of new species and breaking resistance. This chapter deals with different strategies which have been used to curb geminivirus spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akmal M, Baig MS, Khan JA (2017) Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol 10(263):21–29

    Article  CAS  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    PubMed  PubMed Central  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912. https://doi.org/10.1038/srep30223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight-behavior. Environ Entomol 30:394–399

    Article  Google Scholar 

  • Asad S, Haris WA, Bashir A, Zafar Y, Malik KA, Malik NN, Lichtenstein CP (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch Virol 148:2341–2352

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730 2741

    Article  PubMed Central  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Baldrich P, Segundo BS (2016) MicroRNAs in rice innate immunity. Rice (NY) 9(6). https://doi.org/10.1186/s12284-016-0078-5

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1994) Nove1 strategies for engineering virus resistance in plants. Curr Opin Biotechnol 5:117–124

    Article  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN (1993) Transgenic resistance to plant viruses. Arch Virol 4:327–416

    Google Scholar 

  • Beachy RN (1997) Mechanisms and application of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra chromosomal origin. Microbiol 151:2551–2561

    Article  CAS  Google Scholar 

  • Briddon RW, Markham PG (2001) Cotton leaf curl virus disease. Virus Res 71:151–159

    Article  Google Scholar 

  • Brunetti A, Tavazza M, Noris E, Tavazza R, Caciagli P, Ancora G, Crespi S, Accotto GP (1997) High expression of truncated viral rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant-Microbe Interact 10:571–579

    Article  CAS  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611

    Article  CAS  PubMed  Google Scholar 

  • Chen LF, Brannigan K, Clark R, Gilbertson RL (2010) Characterization of curtoviruses associated with curly top disease of tomato in California and monitoring for these viruses in beet leafhoppers. Plant Dis 94:99–108

    Article  CAS  PubMed  Google Scholar 

  • Cogoni C, Macino G (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci USA 94:10233–10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, Macino G (1996) Transgene silencing of the al-1 gene invegetative cells of Neurospora is mediated by a cytoplasmiceffector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 15:3153–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Adv Dis Vec Res 10:259–288

    Article  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313

    Article  CAS  PubMed  Google Scholar 

  • Crowdy SH, Posnette AF (1947) Virus diseases of cacao in West Africa II. Cross immunity experiments with virus 1A, 1B and 1C. Ann Appl Biol 34:403–411. https://doi.org/10.1111/j.1744-7348.1947.tb06373.x

    Article  Google Scholar 

  • Cui X, Li G, Wang D, Hu D, Zhou X (2005) A begomovirus DNAbencoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Campa l, del Solar AG, Espinosa M (1990) Initiation of replication of plasmid pLS1: the initiator protein RepB acts on two distant DNA regions. J Mol Biol 213:247–262

    Article  PubMed  Google Scholar 

  • Dogar AM (2006) RNAi dependent epigenetic marks on geminivirus promoter. Virol J 3:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL et al (2007) High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JT (1978) The use of a virulent virus strain to protect plants against the effects of virulent strains. Ann Appl Biol 89:110–114. https://doi.org/10.1111/j.1744-7348.1978.tb02581.x

    Article  Google Scholar 

  • Fontes EPB, Gladfelter HJ, Schaffer RL, Petty ITD, Hanley-Bowdoin L (1994) Geminivirus replication origins have a modular organization. Plant Cell 6:405–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller C (1901) First Rep. Gov Entomol Natal 1899–1901:17–19

    Google Scholar 

  • Gazal W, Jawaid AK (2018) Overexpression of ghr-miR166b generates resistance against Bemisia tabaci infestation in Gossypium hirsutum plants. Planta 247:1175–1189

    Article  CAS  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Voinnet O, Chappell L, Baulcombe DC (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Harrison BD, Robinson DJ (2002) Green shoots of geminivirology. Physiol Mol Plant Pathol 60:215–218

    Article  Google Scholar 

  • Hilje L, Costa HS, Stansly PA (2001) Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot 20:801–812

    Article  Google Scholar 

  • Hong Y, Stanley J (1996) Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication associated (ACI) transgene. Mol Plant Micro Interact 9:219–225

    Article  CAS  Google Scholar 

  • Horn NM, Reddy SV, Roberts IM, Reddy DVR (1993) Chickpea chlorotic dwarf virus, a new leafhopper-transmitted geminivirus of chickpea in India. Ann Appl Biol 122:467–479

    Article  Google Scholar 

  • Hugues JA, Ollennu LAA (1994) Mild strain protection of cocoa in Ghana against cocoa swoollen shoot virus—a review. Plant Pathol 43:442–457. https://doi.org/10.1111/j.1365-3059.1994.tb01578.x

    Article  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jupin I, De Kouchkovsky F, Jouanneau F, Gronenborn B (1994) Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204:82–90

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep 35:1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Khan JA, Ahmad J (2005) Diagnosis, monitoring and transmission characteristics of Cotton leaf curl virus. Curr Sci 88:1803–1809

    CAS  Google Scholar 

  • Khan JA, Dijkstra J (2006) Plant viruses as molecular pathogens. The Haworth Press, New York

    Google Scholar 

  • Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton Gossypium hirsutum cultivar. Virus Genes 52(4):530–537

    Article  CAS  PubMed  Google Scholar 

  • Kumria R, Verma R, Rajam MV (1998) Potential applications of antisense RNA technology in plants. Curr Sci 74:35–41

    CAS  Google Scholar 

  • Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH et al (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13(3):303–317

    Article  CAS  PubMed  Google Scholar 

  • Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I et al (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Nat Biotechnol 12(5):500–504

    Article  CAS  Google Scholar 

  • Kurth EG, Peremyslov VV, Prokhnevsky AI, Kasschau KD, Miller M, Carrington JC et al (2012) Virus-derived gene expression and RNA interference vector for grapevine. J Virol 86:6002–6009. https://doi.org/10.1128/JVI.00436-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  • Lapidot M, Gafny R, Ding E, Wolf S, Lucas WJ, Beachy RN (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4:959–970

    Article  CAS  Google Scholar 

  • Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B (1995) In vivo cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA 92:3879–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarowitz SG, Wu LC, Rogers SG, Elmer JS (1992) Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4:799–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, van Tonder T, Pietersen G, Davies JW, Stanley J (1997) Molecular characterisation of a subgroup I geminivirus from a legume in South Africa. J Gen Virol 78:2113–2117

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney HH (1926) Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16:883

    Google Scholar 

  • Morris B, Richardson KA, Eddy P, Zhan X, Haley A, Gardner R (1991) Mutagenesis of the AC3 open reading frame of African cassava mosaic virus DNA a reduces DNA B replication and ameliorates disease symptoms. J Gen Virol 72:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Nakazono-Nagaoka E, Takahashi T, Shimizu T, Kosaka Y, Natsuaki T, Omura T et al (2009) Cross-protection against bean yellow mosaic virus (BYMV) and clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 99:251–257. https://doi.org/10.1094/PHYTO-99-3-0251

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660. https://doi.org/10.3389/fpls.2014.00660

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishiguchi M, Kobayashi K (2011) Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J Gen Plant Pathol 77:221–229

    Article  Google Scholar 

  • Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M (1996) Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224:130–138

    Article  CAS  PubMed  Google Scholar 

  • Nunez JK, Harrington LB, Doudna JA (2016) Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem Biol 11:681–688

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1996) The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224:390–404

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale MQ et al (2003) Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution. Evol Develop 5:372–378

    Article  CAS  Google Scholar 

  • Powell-Abel P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276(5318):1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11(7):1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Register JC 3rd, Beachy RN (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524–532

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor. Evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Pérez-Quintero ÁL, Hassan M, Tatarinova TV, López C (2011) Artificial microRNAs (amiRNAs) engineering–on how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophy Res Comm 406(3):315–319

    Article  CAS  Google Scholar 

  • Saunders K, Lucy A, Stanley J (1992) RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus. Nucleic Acids Res 20:6311–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd DN, Martin DP, Van der Walt E, Dent K, Vasrani A, Rybicki EP (2009) Maize streak virus: an old and complex emerging pathogen. Mol Plant Pathol 11:1–12

    Article  PubMed Central  Google Scholar 

  • Shweta, Akhter Y, Khan JA (2018) Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against cotton leaf curl Burewala virus. Gene 638:60–65

    Article  CAS  PubMed  Google Scholar 

  • Singh I (1990) Papaya. IBH Publishing, New Delhi

    Google Scholar 

  • Sinha V, Sarin NB, Bhatnagar D (2017) The efficacy of antisense-based construct for inducing resistance against Croton yellow vein mosaic virus in Nicotiana tabacum. Virus Genes 53(6):906–912

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk P, Green A, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Sovova T, Kerins G, Demnerova K, Ovesna J (2016) Genome editing with engineer ednuclease sin economically important animals and plants: state of the art in the research pipeline. Curr Issues MolBiol 21:41–62

    Google Scholar 

  • Stella S, Montoya G (2016) The genome editing revolution: a CRISPR- Cas TALE off-target story. BioEssays 38:S4–S13

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenllado F, Martinez-Garcia B, Vargas M, Diaz-Ruiz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Thresh JM, Cooter RJ (2005) Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol 54:587–614

    Article  Google Scholar 

  • Valkonen J (1998) Virus disease control in plants using natural and engineered resistance and some consideration regarding biosafety. Currents 17:51–55

    Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78(17):9487–9498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220. https://doi.org/10.1038/nrg1555

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–14152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45. https://doi.org/10.1016/j.virusres.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  • Wang HL (1991) Effectiveness of cross protection by a mild strain of zucchini yellow mosaic virus in cucumber, melon, and squash. Plant Dis 75:203

    Article  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Lister RM, Fattouh FA (1991) Cross-protection among strains of barley yellow dwarf virus. J Gen Virol 72:791–799

    Article  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wilson TMA (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci USA 90:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wintermantel WM, Banerjee N, Oliver JC, Paolillo DJ, Zaitlin M (1997) Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology 231:248–257

    Article  CAS  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H et al (2015) DNA- free genome editing in plants with pre-assembled CRISPR- Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sherwood T, Patte C, Hiebert E, Polston J (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94(5):490–496

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Wege C, Jeske H (2001) Movement proteins (BC1 and BV1) of Abutilon mosaic geminivirus are cotransported in and between cells of sink but not of source leaves as detected by green fluorescent tagging. Virology 290:249–260

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. Adv Virus Res 76:211–264

    Article  CAS  PubMed  Google Scholar 

  • Zulma IM, Argüello-Astorga GR, Bustamante RFR (2002) Geminivirus replication and gene expression. In: Khan JA, Dijkstra J (eds) Plant viruses as molecular pathogens. The Haworth Press, New York, p 537

    Google Scholar 

Download references

Acknowledgements

AK is funded by Science and Engineering Research Board (SERB), Govt of India, and is thankful to Mr. Ajay Pratap Singh, Sr Director, IILM-CET Greater Noida for facilities and keen interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Khan, J.A. (2019). Geminivirus Resistance Strategies. In: Kumar, R. (eds) Geminiviruses. Springer, Cham. https://doi.org/10.1007/978-3-030-18248-9_11

Download citation

Publish with us

Policies and ethics