Skip to main content

The Inapproximability of k-DominatingSet for Parameterized \(\mathsf {{AC}^0}\) Circuits

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11458))

Included in the following conference series:

  • 518 Accesses

Abstract

InĀ [4], Chen and Flum showed that any FPT-approximation of the \(k\) -Clique problem is not in \({para- \mathsf {AC}}^{0}\) and the \(k\) -DominatingSet (\(k\)-DomSet) problem could not be computed by \({para- \mathsf {AC}}^{0}\) circuits. It is natural to ask whether f(k)-FPT-approximation of the \(k\)-DomSet problem is in \({para- \mathsf {AC}}^{0}\) for some computable function f.

Very recently [13, 20] showed that assuming \(\mathsf {W[1]}\ne \mathsf {FPT}{}\), the \(k\)-DomSet cannot be approximated by FPT algorithms. We observe that the constructions in [13] can be carried out in \({para- \mathsf {AC}}^{0}\), and thus we prove that \({para- \mathsf {AC}}^{0}\) circuits could not approximate this problem with ratio f(k) for any computable function f. Moreover, under the hypothesis that the 3-CNF-SAT problem cannot be computed by constant-depth circuits of size \(2^{\varepsilon n}\) for some \(\varepsilon >0\), we show that constant-depth circuits of size \(n^{o(k)}\) cannot distinguish graphs whose dominating numbers are either \(\le k\) or \(>\root k \of { \frac{\log n}{3\log \log n} }\). However, we find that the hypothesis may be hard to settle by showing that it implies \(\mathsf {NP}\not \subseteq \mathsf {NC^1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajtai, M.: \({{\Sigma _1^1}}\)-formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1ā€“48 (1983). https://doi.org/10.1016/0168-0072(83)90038-6

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for \(k\)-restrictions. ACM Trans. Algorithms 2(2), 153ā€“177 (2006). https://doi.org/10.1145/1150334.1150336

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Chalermsook, P., et al.: From gap-ETH to FPT-inapproximability: clique, dominating set, and more. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 743ā€“754. IEEE, Berkeley, October 2017. https://doi.org/10.1109/FOCS.2017.74

  4. Chen, Y., Flum, J.: Some lower bounds in parameterized ac\(^0\). In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, pp. 27:1ā€“27:14. Schloss Dagstuhlā€“Leibniz-Zentrum fuer Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.27

  5. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233ā€“235 (1979). https://doi.org/10.1287/moor.4.3.233

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 624ā€“633. ACM, New York (2014). https://doi.org/10.1145/2591796.2591884

  7. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of parameterized problems: classes and completeness. Algorithmica 71(3), 661ā€“701 (2015). https://doi.org/10.1007/s00453-014-9944-y

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634ā€“652 (1998). https://doi.org/10.1145/285055.285059

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theor. 17(1), 13ā€“27 (1984). https://doi.org/10.1007/BF01744431

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. HĆ„stad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC 1986, pp. 6ā€“20. ACM, New York (1986). https://doi.org/10.1145/12130.12132

  11. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256ā€“278 (1974). https://doi.org/10.1016/S0022-0000(74)80044-9

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85ā€“103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2

    ChapterĀ  Google ScholarĀ 

  13. Lin, B.: A Simple Gap-producing Reduction for the Parameterized Set Cover Problem (2018). https://sites.google.com/site/bingkai314159/gapsetcover.pdf

  14. LovĆ”sz, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383ā€“390 (1975). https://doi.org/10.1016/0012-365X(75)90058-8

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Lund, C., Yannakakis, M., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960ā€“981 (1994). https://doi.org/10.1145/185675.306789

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Moshkovitz, Dana: The projection games conjecture and the NP-hardness of in n-approximating set-cover. In: Gupta, Anupam, Jansen, Klaus, Rolim, JosĆ©, Servedio, Rocco (eds.) APPROX/RANDOM-2012. LNCS, vol. 7408, pp. 276ā€“287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0_24

    ChapterĀ  MATHĀ  Google ScholarĀ 

  17. Murray, C., Williams, R.: Circuit lower bounds for nondeterministic quasi-polytime: an easy witness lemma for NP and NQP. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pp. 890ā€“901. ACM, New York (2018). https://doi.org/10.1145/3188745.3188910

  18. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 475ā€“484. ACM, New York (1997). https://doi.org/10.1145/258533.258641

  19. Rossman, B.: On the constant-depth complexity of \(k\)-clique. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 721ā€“730. ACM, New York (2008). https://doi.org/10.1145/1374376.1374480

  20. Karthik, C.S., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2018, pp. 1283ā€“1296. ACM Press, Los Angeles (2018). https://doi.org/10.1145/3188745.3188896

  21. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J. Discrete Math. 31(2), 1277ā€“1293 (2017). https://doi.org/10.1137/16M1067767

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Slavıįø±, P.: A tight analysis of the greedy algorithm for set cover. J. Algorithms 25(2), 237ā€“254 (1997).https://doi.org/10.1006/jagm.1997.0887

  23. Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theor. Ser. A 16(3), 391ā€“397 (1974). https://doi.org/10.1016/0097-3165(74)90062-4

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Williams, R.: New algorithms and lower bounds for circuits with linear threshold gates. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 194ā€“202. ACM , New York (2014). https://doi.org/10.1145/2591796.2591858

  25. Williams, R.: Nonuniform ACC circuit lower bounds. J. ACM 61(1), 2:1ā€“2:32 (2014). https://doi.org/10.1145/2559903

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgement

I am grateful to Yijia Chen, Bundit Laekhanukit and Chao Liao for many helpful discussions and valuable comments. I also thank the anonymous referees for their detailed comments. This research is supported by National Natural Science Foundation of China (Project 61872092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxing Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, W. (2019). The Inapproximability of k-DominatingSet for Parameterized \(\mathsf {{AC}^0}\) Circuits. In: Chen, Y., Deng, X., Lu, M. (eds) Frontiers in Algorithmics. FAW 2019. Lecture Notes in Computer Science(), vol 11458. Springer, Cham. https://doi.org/10.1007/978-3-030-18126-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18126-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18125-3

  • Online ISBN: 978-3-030-18126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics