Skip to main content

Introduction

  • Chapter
  • First Online:
  • 447 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 161))

Abstract

Rapid global industrial growth has exacerbated demand in energy supply among the increasing population. This demand is fulfilled from two main resources: (i) fossil fuels and nuclear energy [1], (ii) renewable energy sources. Energy derived from fossil fuels negatively impacts the environment by causing pollution and global warming. Such fuels may be unavailable in the near future, and so we must seek alternatives for the reduction of the dependency on non-renewable sources [2]. Renewable energy technologies have evolved over the years. These technologies interestingly are not dependent on the limited fuel sources. Energy extraction from organic or inorganic wastes efficiently resolves energy and environmental issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akdeniz, F., Çaglar, A., Güllü, D.: Recent energy investigations on fossil and alternative nonfossil resources in Turkey. Energy Convers. Manag. 43, 575–589 (2002)

    Article  Google Scholar 

  2. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S.: Microbial fuel cell as new technology for bioelectricity generation: a review. Alex. Eng. J. 54, 745–756 (2015)

    Article  Google Scholar 

  3. Kirubakaran, A., Jain, S., Nema, R.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13, 2430–2440 (2009)

    Article  Google Scholar 

  4. Sharaf, O., Orhan, M.: An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014)

    Article  Google Scholar 

  5. Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., Christie, P.: Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. J. Environ. Sci. 27, 225–231 (2015)

    Article  Google Scholar 

  6. Mathuriya, A., Sharma, V.: Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J. Biochem. Technol. 1, 49–52 (2009)

    Google Scholar 

  7. Qin, M., Hynes, E., Abu-Reesh, I., He, Z.: Ammonium removal from synthetic wastewater promoted by current generation and water flux in an osmotic microbial fuel cell. J. Clean. Prod. 149, 856–862 (2017)

    Article  Google Scholar 

  8. HaoYu, E., Cheng, S., Scott, K., Logan, B.: Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sour. 171, 275–281 (2007)

    Article  Google Scholar 

  9. Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I.: Microbial fuel cells: From fundamentals to applications: a review. J. Power Sour. 356, 225–244 (2017)

    Article  Google Scholar 

  10. Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010)

    Article  Google Scholar 

  11. Lovley, D.: The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19, 564–571 (2008)

    Article  Google Scholar 

  12. Lovley, D.: Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006)

    Article  Google Scholar 

  13. Logan, B., Hamelers, B., Rozendal, R., Schrãuder, U., Keller, J., Freguia, S.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)

    Article  Google Scholar 

  14. Dumitru, A., Scott, K.: Anode materials for microbial fuel cells. Microb. Electrochem. Fuel Cells, 117–152 (2016)

    Google Scholar 

  15. Yamashita, T., Yokoyama, H.: Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol. Biofuels 11(39), 1–13 (2018)

    Google Scholar 

  16. Mustakeem, M.: Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew. Sustain. Energy 4(22), 1–11 (2015)

    Google Scholar 

  17. Gezginci, M., Uysal, Y.: The Effect of different substrate sources used in microbial fuel cells on microbial community. JSM Environ. Sci. Ecol. 4(3) (2016)

    Google Scholar 

  18. Pandey, P., Shinde, V.N., Deopurkar, R.L., Kale, S.P., Patil, S.A., Pant, D.: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168, 706–723 (2016)

    Article  Google Scholar 

  19. Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E.: Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 41(11), 4053–4058 (2007)

    Article  Google Scholar 

  20. Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y., Kim, I.S.: Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100(14), 3518–3525 (2009)

    Article  Google Scholar 

  21. Zhao, Y.G., Zhang, Y., She, Z., Shi, Y., Wang, M., Gao, M., Guo, L.: Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities. Environ. Eng. Sci. vpl. 34(9), 666–674 (2017)

    Article  Google Scholar 

  22. Wu, W., Yang, F., Liu, X., Bai, L.: Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells. Microb. Cell Factories 13(1), 1–6 (2014)

    Article  Google Scholar 

  23. Mokhtarian, N., Rahimnejad, M., Najafpour, G.D., Daud, W.R.W., Ghoreyshi, A.A.: Effect of different substrate on performance of microbial fuel cell. African J. Biotechnol. 11(14), 3363–3369 (2012)

    Article  Google Scholar 

  24. Garba, N., Saadu, L., Balarabe, M.: An overview of the substrates used in microbial fuel cells. Greener J. BioChem. Biotechnol. 4(2), 7–26 (2017)

    Article  Google Scholar 

  25. Chouler, J., Bentley, I., Vaz, F., Fee, O., A, Cameron P, Di Lorenzo M.: Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochimica Acta. 79, 319–326 (2017)

    Google Scholar 

  26. Scott, K.: Membranes and separators for microbial fuel cells. Microb. Electrochem. Fuel Cells, 153–178 (2016)

    Google Scholar 

  27. Leon, J.X., Daud, W.R.W., Ghasemi, M., Liew, K.B., Ismail, M.: Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew. Sustain. Energy Rev. 28, 575–587 (2013)

    Article  Google Scholar 

  28. Chouler, J., Bentley, I., Vaz, F., Fee, O., A, Cameron PJ, Di Lorenzo M.: Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochimica Acta 231, 319–326 (2017)

    Google Scholar 

  29. Das, S., Dutta, K., Rana, D.: Polymer electrolyte membranes for microbial fuel cells: a review. Polymer Rev., 1–20 (2018)

    Google Scholar 

  30. Ghassemi, Z., Slaughter, G.: Biological fuel cells and membranes. Membranes 7(1), 1–12 (2017)

    Article  Google Scholar 

  31. Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., Oh, S.: A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res. J. 1, 7–15 (2014)

    Article  Google Scholar 

  32. Dharmadhikari, S., Ghosh, P., Ramachandran, M.: Synthesis of proton exchange membranes for dual-chambered microbial fuel cells. J. Serbian Chem. Soc. 83(5), 611–623 (2018)

    Article  Google Scholar 

  33. Zhang, X., Cheng, S., Huang, X., Logan, B.E.: Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens. Bioelectron. 25, 1825–1828 (2010)

    Article  Google Scholar 

  34. Christgen, B., Scott, K., Dolfing, J., Head, I.M., Curtis, T.P.: An Evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLOS ONE 10(8) (2015)

    Google Scholar 

  35. Mishra, B., Awasthi, S., Rajak, R.: A review on electrical behavior of different substrates, electrodes and membranes in microbial fuel cell. World Academy Sci. Eng. Technol. Int. J. Energy Power Eng. 11(9), 1023–1027 (2017)

    Google Scholar 

  36. Lohar, S., Patil, V., Patil, D.: Role of mediators in microbial fuel cell for generation of electricity and waste water treatment. Int. J. Chem. Sci. Appl. 6(1), 6–11 (2015)

    Google Scholar 

  37. Park, D., Zeikus, J.G.: Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66(4), 1292–1297 (2000)

    Article  Google Scholar 

  38. Lin, C.W., Wu, C.H., Chiu, Y.H., Tsai, S.L.: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125, 30–35 (2014)

    Article  Google Scholar 

  39. Sund, C.J., McMasters, S., Crittenden, S.R.: Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561–568 (2007)

    Article  Google Scholar 

  40. Rossi, R., Cavina, M., Setti, L.: Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae. Chem. Eng. Trans. 49, 559–564 (2016)

    Google Scholar 

  41. Adebule, A.P., Aderiye, B.I., Adebayo, A.A.: Improving bioelectricity generation of microbial fuel cell (MFC) with mediators using kitchen waste as substrate. Ann. Appl. Microbiol. Biotechnol. J. 2(1), 1–5 (2018)

    Google Scholar 

  42. Yifeng, Z., Liping, H., Jingwen, C., Xianliang, Q., Xiyun, C.: Electricity generation in microbial fuel cells: using humic acids as a mediator. J. Biotechnol. 136, 474–475 (2008)

    Google Scholar 

  43. Xu, B., Ge, Z., He, Z.: Sediment microbial fuel cells for wastewater treatment: challenges and opportunities. Environ. Sci. Water Res. Technol. 1(3), 279–284 (2015)

    Article  Google Scholar 

  44. Strik, D., Timmers, R., Helder, M., Steinbusch, K., Hamelers, H., Buisman, C.: Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29(1), 41–49 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravi Patel , Dipankar Deb , Rajeeb Dey or Valentina E. Balas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, R., Deb, D., Dey, R., E. Balas, V. (2020). Introduction. In: Adaptive and Intelligent Control of Microbial Fuel Cells. Intelligent Systems Reference Library, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-18068-3_1

Download citation

Publish with us

Policies and ethics