Skip to main content

Schwarzschild Spacetime Under Generalised Gullstrand–Painlevé Slicing

  • Chapter
  • First Online:
Einstein Equations: Physical and Mathematical Aspects of General Relativity (DOMOSCHOOL 2018)

Abstract

We investigate a foliation of Schwarzschild spacetime determined by observers freely falling in the radial direction. This is described using a generalisation of Gullstrand–Painlevé coordinates which allows for any possible radial velocity. This foliation provides a contrast with the usual static foliation implied by Schwarzschild coordinates. The 3-dimensional spaces are distinct for the static and falling observers, so the embedding diagrams, spatial measurement, simultaneity, and time at infinity are also distinct, though the 4-dimensional spacetime is unchanged. Our motivation is conceptual understanding, to counter Newton-like viewpoints. In future work, this alternate foliation may shed light on open questions regarding quantum fields, analogue gravity, entropy, energy, and other quantities. This article is aimed at experienced relativists, whereas a forthcoming series is intended for a general audience of physicists, mathematicians, and philosophers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Infinity can be made rigorous by conformal compactification, which produces a new manifold with a boundary consisting of timelike, null, and spacelike infinities. However, for our purposes a simple limit r → is often sufficient, or at least an approximation r ≫ 2M. Physically, infinity is loosely analogous with Solar System observers far from a black hole.

  2. 2.

    Recall the intuition for combining a vector with a 1-form dT to produce a scalar, as the number of level sets T = const crossed by the vector [47, §3.3] [35, §2.5].

  3. 3.

    We write ds for both, but these should not be equated, as they are restrictions of the full spacetime metric along different 4-vectors.

  4. 4.

    By “ruler” we mean technically a vector orthogonal to u in the local tangent space, but intended as an approximation to an extended object on the manifold. This could be a hypothetical construction based on radar results, or a “resilient” physical rod [42, §2.5] whenever the rod hypothesis is justified.

References

  1. F. Belgiorno, S. Cacciatori, D. Faccio, Hawking Radiation: from Astrophysical Black Holes to Analogous Systems in Lab (World Scientific, Singapore, 2018)

    Book  MATH  Google Scholar 

  2. D. Bini, A. Geralico, R.T. Jantzen, Gen. Relativ. Gravit. 44, 603 (2012)

    Article  ADS  Google Scholar 

  3. D. Bini, L. Lusanna, B. Mashhoon, Int. J. Mod. Phys. D 14, 1413 (2005)

    Article  ADS  Google Scholar 

  4. H.R. Brown, Physical relativity. Space-time structure from a dynamical perspective (Oxford University Press, Oxford, 2005)

    Google Scholar 

  5. B. Carter, in Black Holes (Les Astres Occlus), ed. by C. DeWitt, B.S. DeWitt (Gordon & Breach Science, New York, 1973), pp. 57–214

    Google Scholar 

  6. S. Chandrasekhar, The Mathematical Theory of Black Holes (Springer, Dordrecht, 1983)

    MATH  Google Scholar 

  7. F. de Felice, D. Bini, Classical Measurements in Curved Space-Times (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  8. F. de Felice, C.J.S. Clarke, Relativity on Curved Manifolds. (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  9. J. Ehlers, Gen. Relativ. Gravit. 25, 1225 (1993)

    Article  ADS  Google Scholar 

  10. J. Eisenstaedt, Einstein and the History of General Relativity, ed. by D. Howard, J. Stachel (1989), pp. 277–292

    Google Scholar 

  11. G.F.R. Ellis, R. Maartens, M.A.H. MacCallum Relativistic Cosmology (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  12. F. Estabrook, H. Wahlquist, S. Christensen, B. Dewitt, L. Smarr, E. Tsiang, Phys. Rev. D 7, 2814 (1973)

    Article  ADS  Google Scholar 

  13. T.K. Finch, Gen. Relativ. Gravit. 47, 56 ( 2015)

    Article  ADS  Google Scholar 

  14. L. Flamm, Gen. Relativ. Gravit. 47, 72 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. V.P. Frolov, I.D. Novikov, Black Hole Physics : Basic Concepts and New Developments (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  16. R. Gautreau, B. Hoffmann, Phys. Rev. D 17, 2552 (1978)

    Article  ADS  Google Scholar 

  17. E. Gourgoulhon, 3+1 Formalism in General Relativity (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  18. A. Gullstrand, Allgemeine lösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie (Almqvist & Wiksell, Stockholm, 1922)

    MATH  Google Scholar 

  19. Y. Hagihara, Celestial Mechanics. Vol. 1: Dynamical Principles and Transformation Theory (MIT Press, London, 1970)

    Google Scholar 

  20. A.J.S. Hamilton, General Relativity, Black Holes, and Cosmology (Oxford University Press, Oxford, 2015)

    Google Scholar 

  21. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  22. M.P. Hobson, G.P. Efstathiou, A.N. Lasenby, General Relativity (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  23. S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Hoboken, 2011)

    Book  MATH  Google Scholar 

  24. P. Kraus, F. Wilczek, Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9(40), 3713–3719 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L. Landau, E. Lifshitz, Field Theory (GITTL, Moscow, 1941)

    Google Scholar 

  26. G. Lemaître, Publication du Laboratoire d’Astronomie et de Géodésie de l’Université de Louvain 9, 171–205 (1932)

    ADS  Google Scholar 

  27. S. Liberati, G. Tricella, M. Visser, Class. Quantum Grav. 35, 155004 (2018)

    Article  ADS  Google Scholar 

  28. H.-C. Lin, C. Soo, Gen. Relativ. Gravit. 45, 79 (2013)

    Article  ADS  Google Scholar 

  29. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius, J. Uglum, Phys. Rev. D 52, 6997 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. MacLaurin (2018), Mimicking a black hole in flat spacetime. ColinsCosmos.com

  31. D.B. Malament, Philosophy of Physics. Part A. Handbook of the Philosophy of Science (Elsevier, Amsterdam, 2006), pp. 229

    Google Scholar 

  32. D. Marolf, Gen. Relativ. Gravit. 31, 919 (1999)

    Article  ADS  Google Scholar 

  33. K. Martel, E. Poisson, Am. J. Phys. 69, 476 (2001)

    Article  ADS  Google Scholar 

  34. S.D. Mathur, What exactly is the information paradox?, in Physics of Black Holes, vol. 3 (Springer, Berlin, 2009)

    Google Scholar 

  35. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Co., New York, 1973)

    Google Scholar 

  36. T. Moore, A General Relativity Workbook (University Science Books, Sausalito, 2012)

    Google Scholar 

  37. T. Mueller, F. Grave, Catalogue of spacetimes (2010). arXiv: 0904.4184

    Google Scholar 

  38. B. O’Neill, The Geometry of Kerr Black Holes (Courier Corporation, North Chelmsford, 1995)

    MATH  Google Scholar 

  39. P. Painlevé, CR Acad. Sci. Paris (serie non specifiee) 173, 677 (1921)

    Google Scholar 

  40. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Poisson, A relativist’s toolkit : the mathematics of black-hole mechanics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  42. W. Rindler, Essential Relativity. Special, General, and Cosmological. (Springer, Berlin, 1977)

    Google Scholar 

  43. W. Rindler, Relativity: Special, General and Cosmological, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  44. K. Rosquist, Gen. Relativ. Gravit. 41, 2619 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  45. R.K. Sachs, H.-H. Wu, General Relativity for Mathematicians (Springer, New York, 1977), pp. 52–59

    Book  MATH  Google Scholar 

  46. R.E. Scherr, P.S. Shaffer, S. Vokos, Am. J. Phys. 70, 1238 (2002)

    Article  ADS  Google Scholar 

  47. B. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  48. J.M.M. Senovilla, Gen. Relativ. Gravit. 39, 685 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. L. Smarr, J.W. York, Phys. Rev. D 17, 2529 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  50. M.H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989)

    Book  Google Scholar 

  51. J.L. Synge, Proc. Lond. Math. Soc. 2 43, 376 (1937)

    Google Scholar 

  52. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  53. E.F. Taylor, J.A. Wheeler, Exploring Black Holes: Introduction to General Relativity (Pearson, London, 2000)

    Google Scholar 

  54. C. Vilain, Studies in the History of General Relativity3, 419 (1992)

    MathSciNet  Google Scholar 

  55. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  56. R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin MacLaurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacLaurin, C. (2019). Schwarzschild Spacetime Under Generalised Gullstrand–Painlevé Slicing. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_9

Download citation

Publish with us

Policies and ethics