Skip to main content

P\(\hbar \)ase-Space Approach to Time Evolution of Quantum States in Confined Systems. The Spectral Split-Operator Method

  • Conference paper
  • First Online:
Book cover Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Abstract

Using the phase space approach, we consider the dynamics of a quantum particle in an isolated confined quantum system with three different potential energy profiles. We solve the Moyal equation of motion for the Wigner function with the highly efficient spectral split-operator method. The main aim of this study is to compare the accuracy of the used algorithm by analysis of the total energy expectation value, in terms of the deviation from its exact value. This comparison is performed for the second and fourth order factorizations of the time evolution operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ter Haar, D.: Rep. Prog. Phys. 24, 304 (1961). https://doi.org/10.1088/0034-4885/24/1/307

    Article  Google Scholar 

  2. Wigner, E.: Phys. Rev. 40, 749 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  Google Scholar 

  3. Pool, J.C.T.: J. Math. Phys. 7, 66 (1966). https://doi.org/10.1063/1.1704817

    Article  Google Scholar 

  4. Ozorio de Almeida, A.M.: Phys. Rep. 295, 265 (1998). https://doi.org/10.1016/S0370-1573(97)00070-7

    Article  MathSciNet  Google Scholar 

  5. Baker, G.A.: Phys. Rev. 109, 2198 (1958)

    Article  MathSciNet  Google Scholar 

  6. Tatarskiĭ, V.I.: Sov. Phys. Usp. 26, 311 (1983). https://doi.org/10.1070/PU1983v026n04ABEH004345

    Article  Google Scholar 

  7. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984). https://doi.org/10.1016/0370-1573(84)90160-1

    Article  MathSciNet  Google Scholar 

  8. Balazs, N.L., Jennings, B.K.: Phys. Rep. 104, 347 (1984)

    Article  MathSciNet  Google Scholar 

  9. Lee, H.W.: Phys. Rep. 259, 147 (1995). https://doi.org/10.1103/PhysRevB.69.073102

    Article  MathSciNet  Google Scholar 

  10. Benedict, M.G., Czirják, A.: Phys. Rev. A 60, 4034 (1999). https://doi.org/10.1103/PhysRevA.60.4034

    Article  Google Scholar 

  11. Kenfack, A., Życzkowski, K.: J. Opt. B Quantum Semiclass. Opt. 6, 396 (2004). https://doi.org/10.1088/1464-4266/6/10/003

    Article  MathSciNet  Google Scholar 

  12. Sadeghi, P., Khademi, S., Nasiri, S.: Phys. Rev. A 82, 012102 (2010). https://doi.org/10.1103/PhysRevA.82.012102

    Article  Google Scholar 

  13. Kenfack, A.: Phys. Rev. A 93, 036101 (2016). https://doi.org/10.1103/PhysRevA.93.036101

    Article  Google Scholar 

  14. Khademi, S., Sadeghi, P., Nasiri, S.: Phys. Rev. A 93, 036102 (2016). https://doi.org/10.1103/PhysRevA.93.036102

    Article  Google Scholar 

  15. Curtright, T.L., Zachos, C.K.: Asia Pac. Phys. Newslett. 01, 37 (2012). https://doi.org/10.1142/S2251158X12000069

    Article  Google Scholar 

  16. Błaszak, M., Domański, Z.: Ann. Phys. 327 (2012). https://doi.org/10.1016/j.aop.2011.09.006

    Article  MathSciNet  Google Scholar 

  17. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Lett. Math. Phys. 1, 521 (1977). https://doi.org/10.1007/BF00399745

    Article  Google Scholar 

  18. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Ann. Phys. 111, 61 (1978). https://doi.org/10.1016/0003-4916(78)90224-5

    Article  Google Scholar 

  19. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Ann. Phys. 111, 111 (1978). https://doi.org/10.1016/0003-4916(78)90225-7

    Article  Google Scholar 

  20. Xue, Y., Prodan, E.: Phys. Rev. B 86, 155445 (2012). https://doi.org/10.1103/PhysRevB.86.155445

    Article  Google Scholar 

  21. Leung, B., Prodan, E.: J. Phys. A 46, 085205 (2013). https://doi.org/10.1088/1751-8113/46/8/085205

    Article  MathSciNet  Google Scholar 

  22. Isar, A., Scheid, W.: Phys. A 335, 79 (2004). https://doi.org/10.1016/j.physa.2003.12.017

    Article  MathSciNet  Google Scholar 

  23. Lechner, G.: Commun. Math. Phys. 312, 265 (2012). https://doi.org/10.1007/s00220-011-1390-y

    Article  Google Scholar 

  24. Delius, G.W., Hüffmann, A.: J. Phys. A 29, 1703 (1996). https://doi.org/10.1088/0305-4470/29/8/018

    Article  MathSciNet  Google Scholar 

  25. Castellani, L.: Class. Quantum Grav. 17, 3377 (2000). https://doi.org/10.1088/0264-9381/17/17/301

    Article  Google Scholar 

  26. Feit, M.D., Fleck, J.A., Steiger, A.: J. Comput. Phys. 47, 412 (1982). https://doi.org/10.1016/0021-9991(82)90091-2

    Article  MathSciNet  Google Scholar 

  27. Torres-Vega, G., Frederick, J.H.: Phys. Rev. Lett. 67, 2601 (1991). https://doi.org/10.1103/PhysRevLett.67.2601

    Article  Google Scholar 

  28. Dattoli, G., Giannessi, L., Ottaviani, P.L., Torre, A.: Phys. Rev. E 51, 821 (1995)

    Article  Google Scholar 

  29. Gómez, E.A., Thirumuruganandham, S.P., Santana, A.: Comput. Phys. Commun. 185, 136 (2014)

    Article  MathSciNet  Google Scholar 

  30. Ciurla, M., Adamowski, J., Szafran, B., Bednarek, S.: Phys. E 15, 261 (2002). https://doi.org/10.1016/S1386-9477(02)00572-6

    Article  Google Scholar 

  31. Hiley, B.J.: J. Comput. Electron. 14, 869 (2015). https://doi.org/10.1007/s10825-015-0728-7

    Article  Google Scholar 

  32. Kubo, R.: J. Phys. Soc. Japan 19, 2127 (1964). https://doi.org/10.1143/JPSJ.19.2127

    Article  Google Scholar 

  33. Bondar, D.I., Cabrera, R., Zhdanov, D.V., Rabitz, H.A.: Phys. Rev. A 88, 052108 (2013). https://doi.org/10.1103/PhysRevA.88.052108

    Article  Google Scholar 

  34. Chin, S.A.: Phys. Lett. A 226, 344 (1997). https://doi.org/10.1016/S0375-9601(97)00003-0

    Article  MathSciNet  Google Scholar 

  35. Chin, S.A., Chen, C.R.: J. Chem. Phys. 117, 1409 (2002). https://doi.org/10.1063/1.1485725

    Article  Google Scholar 

  36. Kaczor, U., Klimas, B., Szydłowski, D., Wołoszyn, M., Spisak, B.: Open Phys. 14, 354 (2016). https://doi.org/10.1515/phys-2016-0036

    Article  Google Scholar 

  37. Kołaczek, D., Spisak, B.J., Wołoszyn, M.: In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 5. AGH-UST Press, Cracow (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Faculty of Physics and Applied Computer Science AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education. D.K. has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [37].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej J. Spisak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kołaczek, D., Spisak, B.J., Wołoszyn, M. (2020). P\(\hbar \)ase-Space Approach to Time Evolution of Quantum States in Confined Systems. The Spectral Split-Operator Method. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_24

Download citation

Publish with us

Policies and ethics