Skip to main content

Effect of Elastic and Inelastic Scattering on Electronic Transport in Open Systems

  • Conference paper
  • First Online:
Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Abstract

The purpose of this study is to apply the distribution function formalism to the problem of electronic transport in open systems, and numerically solve the kinetic equation with a dissipation term. This term is modeled within the relaxation time approximation, and contains two parts, corresponding to elastic or inelastic processes. The collision operator is approximated as a sum of the semiclassical energy dissipation term, and the momentum relaxation term which randomizes momentum but does not change energy. As a result, the distribution of charge carriers changes due to the dissipation processes, which has a profound impact on the electronic transport through the simulated region discussed in terms of the current–voltage characteristics and their modification caused by the scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujita, S.: Introduction to Non-Equilibrium Quantum Statistical Mechanics. W. B. Saunders Company, Philadelphia, London (1966)

    MATH  Google Scholar 

  2. Danielewicz, P.: Ann. Phys. (N.Y.) 152, 239 (1984). https://doi.org/10.1016/0003-4916(84)90092-7

    Article  Google Scholar 

  3. Rammer, J.: Quantum Field Theory of Non-equilibrium States. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  4. Schieve, W.C., Horwitz, L.P.: Quantum Statistical Mechanics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  6. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  7. Kohn, W., Luttinger, J.M.: Phys. Rev. 108, 590 (1957). https://doi.org/10.1103/PhysRev.108.590

    Article  MathSciNet  Google Scholar 

  8. Luttinger, J.M., Kohn, W.: Phys. Rev. 109, 1892 (1958). https://doi.org/10.1103/PhysRev.109.1892

    Article  MathSciNet  Google Scholar 

  9. Ter Haar, D.: Rep. Prog. Phys. 24, 304 (1961). https://doi.org/10.1088/0034-4885/24/1/307

    Article  Google Scholar 

  10. Chruściński, D., Pascazio, S.: Open Syst. Inf. Dyn. 24, 1740001 (2017). https://doi.org/10.1142/S1230161217400017

    Article  MathSciNet  Google Scholar 

  11. Leaf, B.: 9, 65 (1968). https://doi.org/10.1063/1.1664478

    Article  Google Scholar 

  12. Wigner, E.: Phys. Rev. 40, 749 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  Google Scholar 

  13. Tatarskiĭ, V.I.: Sov. Phys. Usp. 26, 311 (1983). https://doi.org/10.1070/PU1983v026n04ABEH004345

    Article  Google Scholar 

  14. Lee, H.W.: Phys. Rep. 259, 147 (1995). https://doi.org/10.1016/0370-1573(95)00007-4

    Article  MathSciNet  Google Scholar 

  15. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2001)

    Book  Google Scholar 

  16. Caldeira, A.O., Leggett, A.J.: Phys. Rev. Lett. 46, 2114 (1981). https://doi.org/10.1103/PhysRevLett.46.211

    Article  Google Scholar 

  17. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

    Article  Google Scholar 

  18. Jonasson, O., Knezevic, I.: J. Comput. Electron. 14, 879 (2015). https://doi.org/10.1007/s10825-015-0734-9

    Article  Google Scholar 

  19. Frensley, W.R.: Rev. Mod. Phys. 62, 745 (1990). https://doi.org/10.1103/RevModPhys.62.745

    Article  Google Scholar 

  20. Kulinowski, K., Wołoszyn, M., Spisak, B.J.: In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 4. AGH-UST Press, Cracow (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Faculty of Physics and Applied Computer Science AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education. K.K. has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [20].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej J. Spisak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulinowski, K., Wołoszyn, M., Spisak, B.J. (2020). Effect of Elastic and Inelastic Scattering on Electronic Transport in Open Systems. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_23

Download citation

Publish with us

Policies and ethics