Skip to main content

Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids

  • Conference paper
  • First Online:
CMBEBIH 2019 (CMBEBIH 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 73))

Included in the following conference series:

Abstract

Microneedles, tiny micron-sized structures, made of a variety of materials, have been recently developed for a painless and safe transdermal delivery of drugs through the skin. While microneedles minimally disrupt the outermost layer of the skin and create a pathway to deliver the therapeutic agents, they could also act as conduits for biosignal sensing. Microneedle-based sensors made of conductive and electrochemically reactive biomaterials can provide the valuable information on the levels of analytes in the blood. Also, researchers have realized the great potential of microneedles integrated with microelectrodes for extraction of interstitial fluid and capillary blood, for enhanced monitoring of patient health. Furthermore, they could serve as a tool for analysis of complex medical conditions and illnesses. This microneedle sensor technology can provide a sophisticated analytical approach for in situ and simultaneous detection of numerous analytes. The microneedles can also be used to measure metabolites, biomarkers, and drug level in the interstitial fluid and capillary blood, as well as for the use of microneedle array technology as biosensors for continuous monitoring of analytes in body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prausnitz, M.R., Allen, M.G., Gujral, I.J.: Microneedle device for extraction and sensing of bodily fluids. US007344499

    Google Scholar 

  2. Cahill, E., O’Cearbhaill, E.: Toward biofunctional microneedles for stimulus-responsive drug delivery. Bioconjug. Chem. 26, 1289–1296 (2015)

    Article  Google Scholar 

  3. Sachdeva, V., Banga, A.K.: Microneedles and their applications. Recent Pat. Drug Deliv. Form, 5(2), 95–132 (2011)

    Article  Google Scholar 

  4. Donnelly, R., Mooney, K., Caffarel-Salvador, E., Torrisi, B., Eltayib, E., McElnay, J.: Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 36(1), 10–17 (2013)

    Google Scholar 

  5. Li, C., Lee, C., Lee, K., Jung, H.: An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2012)

    Article  Google Scholar 

  6. McGrew, R., MeGrew, M.: Encyclopedia of Medical History. McGraw Hill, New York (1985)

    Book  Google Scholar 

  7. Romanyuk, A., Zvezdin, V., Samant, P., Grenader, M., Zemlyanova, M., Prausnitz, M.: Collection of analytes from microneedle patches. Anal. Chem. 86(21), 10520–10523 (2014)

    Article  Google Scholar 

  8. Williams, A.: Transdermal and topical drug delivery. From theory to clinical practice. 1st edn, pp. 3–45. Pharmaceutical Press, London (2003)

    Google Scholar 

  9. Cass, A., Sharma, S.: Microneedle enzyme sensor arrays for continuous in vivo monitoring. Methods Enzymol. 589, 413–427 (2017)

    Article  Google Scholar 

  10. El-Laboudi, A., Oliver, N., Cass, A., Johnston, D.: Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol. Ther. 15(1), 101–115 (2013)

    Article  Google Scholar 

  11. Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., et al.: Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92(2), 502–504 (2001)

    Article  Google Scholar 

  12. Caffarel-Salvador, E., Brady, A., Eltayib, E., Meng, T., Alonso-Vicente, A., Gonzalez-Vazquez, P., et al.: Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One. 10(12), e0145644 (2015)

    Article  Google Scholar 

  13. Yadav, D.J., Vaidya, K.A., Kulkarni, P.R., Raut, R.A.: Microneedles: promising technique for transdermal drug delivery. Int. J. Pharm. Bio. Sci. 2(1), 684–708 (2011)

    Google Scholar 

  14. Nagamine, K., Kubota, J., Kai, H., Ono, Y., Nishizawa, M.: An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices 19(3), 68 (2017)

    Article  Google Scholar 

  15. Donnelly, R.F., Singh, T.R., Garland, M.J., Migalska, K., Majithiya, R., McCrudden, C.M. et al.: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater 22(23), 4879–4890 (2012)

    Article  Google Scholar 

  16. Valdés-Ramírez, G., Li, Y., Kim, J., Jia, W., Bandodkar, A., Nuñez-Flores, R., et al.: Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014)

    Article  Google Scholar 

  17. Windmiller, J., Zhou, N., Chuang, M., Valdés-Ramírez, G., Santhosh, P., Miller, P., et al.: Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9), 1846–1851 (2011)

    Article  Google Scholar 

  18. Wang, P., Cornwell, M., Prausnitz, M.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7(1), 131–141 (2005)

    Article  Google Scholar 

  19. Miller, P., Gittard, S., Edwards, T., Lopez, D., Xiao, X., Wheeler, D., et al.: Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5(1), 13415 (2011)

    Article  Google Scholar 

  20. Kolli, C.S.: Microneedles: bench to bedside. Ther Deliv. 6(9), 1081–1088 (2015)

    Article  Google Scholar 

  21. Miller, P.R., Narayan, R.J., Polsky, R.: Microneedle-based sensors for medical diagnosis. J. Mater. Chem. B 4(8), 1379–1383 (2016)

    Article  Google Scholar 

  22. Chaudhri, B., Ceyssens, F., De Moor, P., Van Hoof, C., Puers, R.: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromechd Microeng. 20(6), 064006 (2010)

    Article  Google Scholar 

  23. Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 29(10), 1172–1183 (2010)

    Article  Google Scholar 

  24. Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)

    Article  Google Scholar 

  25. Strambini, L.M., Longo, A., Scarano, S., Prescimone, T., Palchetti, I., Minunni, M., et al.: Selfpowered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 66, 162–168 (2015)

    Article  Google Scholar 

  26. Mukherjee, E., Collins, S., Isseroff, R., Smith, R.: Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys. 114, 267–275 (2004)

    Article  Google Scholar 

  27. Tsuchiya, K., Nakanishi, N., Uetsuji, Y., Nakamachi, E.: Development of blood extraction system for health monitoring system. Biomed. Microdevices 7(4), 347–353 (2005)

    Article  Google Scholar 

  28. Jina, A., Tierney, M.J., Tamada, J.A., McGill, S., Desai, S., Chua, B., et al.: Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014)

    Article  Google Scholar 

  29. Sharma, S., Huang, Z., Rogers, M., Boutelle, M., Cass, A.E.: Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bional. Chem. 408, 8427–8435 (2016)

    Article  Google Scholar 

  30. Hwa, K.-Y., Subramani, B., Chang, P.-W., Chien, M., Huang, J.-T.: Transdermal microneedle array-based sensor for real time continuous glucose monitoring. Int. J. Electrochem. Sci. 10, 2455–2466 (2015)

    Google Scholar 

  31. Zhou, J.X., Tang, L.N., Liang, F.X., Wang, H., Li, Y.T., Zhang, G.J.: MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 142(22), 4322–4329 (2017)

    Article  Google Scholar 

  32. Esfandyarpour, R., Javanmard, M., Koochak, Z., Esfandyarpour, H., Harris, J.S., Davis, R.W.: Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 7, 044114 (2013)

    Article  Google Scholar 

  33. Bollella, P., Sharma, S., Cass, A.E., Antiochia, R.: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019)

    Article  Google Scholar 

  34. Dardano, P., Calio, A., Di Palma, V., Bavilacqua, M.F., Di Matteo, A., De Stefano, L.: Multianalyte biosensor patch based on polymeric microneedles. 2018. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano P. (eds.) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431, pp. 73–81. Springer, Cham

    Google Scholar 

  35. Li, C.G., Joung, H.-A., Noh, H., Song, M.-B., Kim, M.-G., Jung, H.: One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(6), 3286–3292 (2015)

    Article  Google Scholar 

  36. Campbell, A.S., Kim, J., Wang, J.: Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 10, 126–135 (2018)

    Article  Google Scholar 

  37. Chinnadayyala, S.R., Park, I., Cho, S.: Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim. Acta 185(5), 250 (2018)

    Article  Google Scholar 

  38. Ng, K.W., Moghimi, S.M.: Skin biosensing and bioanalysis: what the future holds. Prec. Nanomed 1(2), 125–127 (2018)

    Google Scholar 

  39. Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)

    Article  Google Scholar 

  40. Whitson, R.C.: Hollow microneedle patch. US20020006355

    Google Scholar 

  41. Gonnelli, R.R.: Microneedle with membrane. US20090043250

    Google Scholar 

  42. Gattiker, G., Kaler, K.I., Mintchev, M.: Electronic Mosquito: designing a semi-invasive Microsystem for blood sampling, analysis and drug delivery applications. Microsyst. Technol. 12(1–2), 44–51 (2005)

    Article  Google Scholar 

  43. Zimmermann, S., Fienbork, D., Stoeber, B., Flounders, A., Liepmann, D.: In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sens. Actuators B Chem. 99(1), 163–173 (2003)

    Article  Google Scholar 

  44. Guy, R.: Diagnostic devices: Managing diabetes through the skin. Nat. Nanotechnol. 11(6), 493–494 (2016)

    Article  Google Scholar 

  45. Gupta, V.K., Singh, A.K., Kumawat, L.K.: Thiazole Schiff base turn-on fluorescent chemosensor for Al3 + ion. Sens. Actuators B Chem. 195, 98–108 (2014)

    Article  Google Scholar 

Download references

Conflict of Interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Tucak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vranić, E., Tucak, A., Sirbubalo, M., Rahić, O., Elezović, A., Hadžiabdić, J. (2020). Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids. In: Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17971-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17970-0

  • Online ISBN: 978-3-030-17971-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics