Skip to main content

Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments

  • Chapter
  • First Online:
Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 9))

Abstract

Fungi form a very diverse group of eukaryotes. The majority of investigated fungi contain mitochondria and are capable of oxidative phosphorylation. On the other hand, anaerobically functioning fungi, found as symbionts in the gastrointestinal tract of many herbivorous mammals, contain hydrogenosomes. These organelles of mitochondrial origin are also found in multiple classes of anaerobically functioning protists. Hydrogenosomes produce hydrogen as an end product of a fermentative energy metabolism and produce ATP by substrate-level phosphorylation. However, the hydrogenosomes of the anaerobic fungi Neocallimastix and Piromyces differ from the hydrogenosomes of trichomonads and those of anaerobic ciliates in the way they convert pyruvate to acetyl-CoA. The hydrogenosomes of these anaerobic fungi use pyruvate:formate lyase (PFL), whereas trichomonads use pyruvate-ferredoxin oxidoreductase (PFO), and anaerobic ciliates use pyruvate dehydrogenase (PDH) for the degradation of pyruvate. The characteristics and role of these hydrogenosomes in the energy metabolism of anaerobic fungi are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanova A, Voncken FGJ, Harhangi H, Hosea KM, Vogels GD, Hackstein JHP (1998) Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol 30(5):1017–1027

    Article  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Hosea KM, Harhangi H, Keltjens JT, den Camp HJMO, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114

    Article  CAS  Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(8):769–779

    Article  CAS  Google Scholar 

  • Andersson JO, Sjogren AM, Davis LAM, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13(2):94–104

    Article  CAS  Google Scholar 

  • Arnau J, Jorgensen F, Madsen SM, Vrang A, Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 180(12):3049–3055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artzi L, Bayer EA, Moraïs S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15:83–95

    Article  CAS  Google Scholar 

  • Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38(1):148–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51(5):1389–1399

    Article  CAS  Google Scholar 

  • Brownlee AG (1989) Remarkably at-rich genomic dna from the anaerobic fungus Neocallimastix. Nucleic Acids Res 17(4):1327–1335

    Article  CAS  Google Scholar 

  • Brownlee AG (1994) The nucleic acids of anaerobic fungi. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Biology, ecology, and function. Marcel Dekker, New York, pp 241–256

    Google Scholar 

  • Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD(+)-dependent acetaldehyde alcohol-dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748

    Article  CAS  Google Scholar 

  • Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8(4):362–369

    Article  CAS  Google Scholar 

  • Chen HZ, Li XL, Ljungdahl LG (1995) Biomass degrading enzymes from anaerobic rumen fungi. SAAS Bull Biochem Biotechnol 8:1–6

    CAS  PubMed  Google Scholar 

  • Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64(2):281–315

    Article  CAS  Google Scholar 

  • Dan MX, Wang CC (2000) Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia. Mol Biochem Parasitol 109(1):25–36

    Article  CAS  Google Scholar 

  • Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296(1–2):45–52

    Article  CAS  Google Scholar 

  • Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O’Malley MA, Griffith GW, Smidt H (2017) PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol 8:1657

    Article  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440(7084):623–630

    Article  CAS  Google Scholar 

  • Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38(3):446–455

    Article  CAS  Google Scholar 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang XH, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184(3):821–830

    Article  CAS  Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25(7):319–324

    Article  CAS  Google Scholar 

  • Gelius-Dietrich G, Henze K (2004) Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: a free-radical enzyme system conserved across divergent eukaryotic lineages. J Eukaryot Microbiol 51(4):456–463

    Article  CAS  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    Article  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7(11):441–447

    Article  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zool Anal Complex Syst 104(3–4):290–302

    CAS  Google Scholar 

  • Hackstein JHP, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50(4):225–245

    Article  CAS  Google Scholar 

  • Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087

    Article  CAS  Google Scholar 

  • Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT, van Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141

    Article  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  Google Scholar 

  • Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc B Lond B Biol Sci 365:713–727

    Article  CAS  Google Scholar 

  • Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16(9):1280–1291

    Article  CAS  Google Scholar 

  • Howe CJ (2008) Cellular evolution: what’s in a mitochondrion? Curr Biol 18:R429–R431

    Article  CAS  Google Scholar 

  • Julliand V, Riondet C, de Vaux A, Alcaraz G, Fonty G (1998) Comparison of metabolic activities between Piromyces citronii, and equine fungal species, and Piromyces communis, a ruminal species. Anim Feed Sci Technol 70(1–2):161–168

    Article  CAS  Google Scholar 

  • Kameshwar AKS, Qin W (2018) Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of Neocallimastigomycota fungi. J Genomics 6:74–87

    Article  Google Scholar 

  • Kessler D, Leibrecht I, Knappe J (1991) Pyruvate-formate-lyase-deactivase and acetyl-coa reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhe. FEBS Lett 281(1–2):59–63

    Article  CAS  Google Scholar 

  • Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymatic ADHE protein of Escherichia coli. J Biol Chem 267(25):18073–18079

    CAS  PubMed  Google Scholar 

  • Li Y, Jin W, Mu C, Cheng Y, Zhu W (2017) Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. J Basic Microbiol 57:933–940

    Article  CAS  Google Scholar 

  • Lipinski KA, Kaniak-Golik A, Golik P (2010) Maintenance and expression of the S. cerevisiae mitochondrial genome–from genetics to evolution and systems biology. Biochim Biophys Acta 1797:1086–1098

    Article  CAS  Google Scholar 

  • Luo QW, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone spring (Oklahoma) Appl. Environ Microbiol 71(10):6175–6184

    Article  CAS  Google Scholar 

  • Maguire F, Richards TA (2014) Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr Biol 24:R518–R520

    Article  CAS  Google Scholar 

  • Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17

    Article  CAS  Google Scholar 

  • Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta-Mol Basis Dis 1762(2):140–147

    Article  CAS  Google Scholar 

  • Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC, Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl Environ Microbiol 56:3793–3797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose-metabolism of Neocallimastix sp L2. Arch Microbiol 160(5):388–396

    Article  CAS  Google Scholar 

  • Marvin-Sikkema FD, Driessen AJM, Gottschal JC, Prins RA (1994) Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix – evidence for a functional-relationship with mitochondria. Mycol Res 98:205–212

    Article  CAS  Google Scholar 

  • Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protists – a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. The Systematics Association, Special Volume Series 56. Kluwer Academic, Dordrecht, pp 109–132

    Google Scholar 

  • Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495

    Article  Google Scholar 

  • Munn EA, Orpin CG, Greenwood CA (1988) The ultrastructure and possible relationships of 4 obligate anaerobic chytridiomycete fungi from the rumen of sheep. Biosystems 22:67–81

    Article  CAS  Google Scholar 

  • Nicholson MJ, Theodorou MK, Brookman JL (2005) Molecular analysis of the anaerobic rumen fungus Orpinomyces – insights into an AT-rich genome. Microbiology (UK) 151:121–133

    Article  CAS  Google Scholar 

  • O’Fallon JV, Wright RW, Calza RE (1991) Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem J 274:595–599

    Article  Google Scholar 

  • Orpin CG (1975) Studies on rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262

    Article  CAS  Google Scholar 

  • Orpin CG (1977) Occurrence of chitin in cell-walls of rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J Gen Microbiol 99:215–218

    Article  CAS  Google Scholar 

  • Peng X, Swift CL, Theodorou MK, O’Malley MA (2018) Methods for genomic characterization and maintenance of anaerobic fungi. In: Fungal genomics. Humana, New York, pp 53–67

    Chapter  Google Scholar 

  • Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the protists. Academic, New York

    Google Scholar 

  • Sánchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64

    Article  Google Scholar 

  • Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29(4):945–954

    Article  CAS  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301(5638):1359–1361

    Article  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207–13212

    Article  CAS  Google Scholar 

  • Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195

    Article  CAS  Google Scholar 

  • Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 370:20140326

    Article  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29(9):1955–1979

    Article  CAS  Google Scholar 

  • Tielens AGM, van Hellemond JJ (2007) Anaerobic mitochondria: properties and origins. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 85–103

    Chapter  Google Scholar 

  • Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152. Part 2

    Article  Google Scholar 

  • van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231

    Article  Google Scholar 

  • Van der Giezen M, Sjollema KA, Artz RRE, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408(2):147–150

    Article  Google Scholar 

  • Voncken F (2001) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. PhD Thesis, University of Nijmegen. ISBN 90-9014868-x

    Google Scholar 

  • Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44(6):1441–1454

    Article  CAS  Google Scholar 

  • Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284(1–2):103–112

    Article  CAS  Google Scholar 

  • Wang HC, Chen YC, Hseu RS (2014) Purification and characterization of a cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem Biophys Res Commun 45:190–195

    Article  CAS  Google Scholar 

  • Wei YQ, Yang HJ, Long RJ, Wang ZY, Cao BB, Ren QC, Wu TT (2017) Characterization of natural co-cultures of Piromyces with Methanobrevibacter ruminantium from yaks grazing on the Qinghai-Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation. AMB Exp 7:160

    Article  Google Scholar 

  • Wilken SE, Saxena M, Petzold LR, O’Malley MA (2018) In silico identification of microbial partners to form consortia with anaerobic fungi. Processes 6(1):7

    Article  Google Scholar 

  • Williams AG, Withers SE, Naylor GE, Joblin KN (1994) Interactions between the rumen chytrid fungi and other microorganisms. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Biology, ecology, and function. Marcel Dekker, New York, pp 191–227

    Google Scholar 

  • Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37:125–129

    Article  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloysius G. M. Tielens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hackstein, J.H.P., Baker, S.E., van Hellemond, J.J., Tielens, A.G.M. (2019). Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments. In: Tachezy, J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monographs, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-17941-0_7

Download citation

Publish with us

Policies and ethics