Skip to main content

Abstract

This chapter presents methods for classifying lithofacies from well logs. Lithofacies are a discrete variable that describes categories of the rock quality, defined as having two or more states. Lithofacies represent small- to intermediate-scale heterogeneities in geological analysis of subsurface formations. Different lithofacies often have different petrophysical properties and can impact subsurface fluid flow. Cores are generally limited, and lithofacies data are often derived from well logs in reservoir characterization.

A stone is ingrained with geological and historical memories.

Andy Goldsworthy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhuyan, K., & Passey, Q. R. (1994). Clay estimation from GR and neutron-density porosity logs. Presented at the SPWLA 35th Annual Logging Symposium.

    Google Scholar 

  • Busch, J. M., Fortney, W. G., & Berry, L. N. (1987). Determination of lithology from well logs by statistical analysis. SPE Formation Evaluation, 2(4), 412–418.

    Article  Google Scholar 

  • Dewan, J. T. (1983). Essentials of modern open-hole log interpretation. Tulsa: PennWell Books, 361 p.

    Google Scholar 

  • Doveton, J. H. (2014). Principles of mathematical petrophysics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Dubois, M. K., Bohling, G. C., & Chakrabarti, S. (2007). Comparison of four approaches to a rock facies classification problem. Computers & Geosciences, 33, 599–617.

    Article  Google Scholar 

  • Jain, A., Narasimha, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  • Jiang, S., et al. (2019). Shale geoscience and engineering for petroleum exploration and development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaufman, L., & Rousseeuv, P. J. (1990). Finding groups in data. New York: Wiley.

    Book  Google Scholar 

  • Kettenring, J. R. (2006). The practice of clustering analysis. Journal of Classification, 23, 3–30.

    Article  MathSciNet  Google Scholar 

  • Khalid, Z. A., Lefranc, M., Phillips, J., Jordan, C., Ralphie, B., Zainal, N. F. S., & M Khir, K. E. A. (2014). Integrated reservoir characterization of a Miocene carbonate buildup without the benefit of core data – A case study from Central Luconia Province, Sarawak. International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-18223-MS.

  • Ma, Y. Z. (2011). Lithofacies clustering using principal component analysis and neural network: applications to wireline logs. Mathematical Geosciences, 43(4), 401–419.

    Article  Google Scholar 

  • Ma, Y. Z., & Gomez, E. (2015). Uses and abuses in applying neural networks for predicting reservoir properties. Journal of Petroleum Science and Engineering, 133, 66–75. https://doi.org/10.1016/j.petrol.2015.05.006.

    Article  Google Scholar 

  • Ma, Y. Z., Wang, H., Sitchler, J., et al. (2014). Mixture Decomposition and Lithofacies Clustering Using Wireline Logs. Journal of Applied Geophysics, 102, 10–20. https://doi.org/10.1016/j.jappgeo.2013.12.011.

    Article  Google Scholar 

  • Ma, Y. Z., Moore, W. R., Gomez, E., Luneau, B., Kaufman, P., Gurpinar, O., & Handwerger, D. (2015a). Wireline log signatures of organic matters and lithofacies classifications for shale and tight carbonate reservoirs. In Y. Z. Ma & S. Holditch (Eds.), Handbook of unconventional resources (pp. 151–171). Waltham: Elsevier.

    Google Scholar 

  • Ma, Y. Z., Moore, W. R., Gomez, E., Clark, W. J., & Zhang, Y. (2015b). Tight gas sandstone reservoirs, Part 1: Overview and lithofacies. In Y. Z. Ma & S. Holditch (Eds.), Handbook of unconventional resources (pp. 405–427). Waltham: Elsevier.

    Google Scholar 

  • McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley, 419p.

    Book  Google Scholar 

  • Moore, W. R., Ma, Y. Z., Urdea, J., & Bratton, T. (2011). Uncertainty analysis in well log and petrophysical interpretations. In Y. Z. Ma & P. LaPointe (Eds.), Uncertainty analysis and reservoir modeling (AAPG Memoir 96). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Schlumberger. (1999). Log interpretation principles/applications, 8th print. Sugar Land, Texas: Schlumberger Educational Services.

    Google Scholar 

  • Scott, D. W. (1992). Multivariate density estimation. New York: Wiley, 317p.

    Book  Google Scholar 

  • Tilke, P. G., Allen, D., & Gyllensten, A. (2006). Quantitative analysis of porosity heterogeneity: Application of geostatistics to borehole image. Mathematical Geology, 38(2), 155–174.

    Article  Google Scholar 

  • Wang, G., & Carr, T. R. (2012). Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian basin. Mathematical Geoscience, 44, 975–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Y.Z. (2019). Facies and Lithofacies Classifications from Well Logs. In: Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-17860-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17860-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17859-8

  • Online ISBN: 978-3-030-17860-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics