Skip to main content

The Effect of Mechanochemical and Ultrasonic Treatments on the Properties of Composition CeO2–MoO3 = 1:1

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Abstract

The influence of mechanochemical (MChT) and ultrasonic (UST) treatment on the properties of CeO2–MoO3 = 1:1 composition was studied. It was shown that in both processes changes in crystalline, porous structures, and morphology occurred. It was found that MChT and UST of samples affect the characteristics of hydrogen temperature-programmed reduction (H2-TPR). The results of the catalytic activity of activated samples in an ethanol oxidation reaction demonstrate the high yield of acetic aldehyde (95%) at 230 °C and the productivity of this product (0.9 mol/kgcat · h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin Y, Li N, Liu H, Hua X, Zhang Q, Chen M, Teng F (2014) Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature. Dalton Trans 43(34):12860–12870

    Article  Google Scholar 

  2. Zhao S, Li J, Wang L, Wang X (2010) Degradation of rhodamine B and safranin-T by MoO3:CeO2 nanofibers and air using a continuous mode. Clean (Weinh) 38(3):268–274

    Google Scholar 

  3. Sobhani-Nasab A, Maddahfar M, Hosseinpour-Mashkan SM (2016) Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. J Mol Liq 216:1–5

    Article  Google Scholar 

  4. Mohamed MM, Katib SMA (2005) Structural and catalytic characteristics of MoO3/CeO2 catalysts: CO oxidation activity. Appl Catal A Gen 287(2):236–243

    Article  Google Scholar 

  5. Chang H, Jong MT, Wang C, Qu R, Du Y, Li J, Hao J (2013) Design strategies for P-containing fuels adaptable CeO2−MoO3 catalysts for DeNOx: significance of phosphorus resistance and N2 selectivity. Environ Sci Technol 47(20):11692–11699

    Article  ADS  Google Scholar 

  6. Zhu J, Gao F, Dong L, Yu W, Qi L, Wang Z, Dong L, Chen Y (2010) Studies on surface structure of MxOy/MoO3/CeO2 system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH3. Appl Catal B Environ 95(1–2):144–152

    Article  Google Scholar 

  7. Peng Y, Qu R, Zhang X, Li J (2013) The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chem Commun 49:6215–6217

    Article  Google Scholar 

  8. Nasser H, Rédey Á, Yuzhakova T, Kovács J (2009) Thermal stability and surface structure of Mo/CeO2 and Ce-doped Mo/Al2O3 catalysts. J Therm Anal Calorim 95(1):69–74

    Article  Google Scholar 

  9. Matsuoka Y, Niwa M, Murakami Y (1990) Morphology of molybdena supported on various oxides and its activity for methanol oxidation. J Phys Chem 94:1477–1482

    Article  Google Scholar 

  10. Rao BG, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Highly efficient CeO2–MoO3/SiO2 catalyst for solvent-free oxidative coupling of benzylamines into N-benzylbenzaldimines with O2 as the oxidant. Catal Lett 145(7):1436–1445

    Article  Google Scholar 

  11. Chatel. G (2018) How sonochemistry contributes to green chemistry? Ultrasonics Chem Part B 40:117–122

    Google Scholar 

  12. Quaresma S, André V, Fernandes A, Duarte MT (2017) Mechanochemistry – a green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimia Acta, Part 2 455:309–318

    Article  Google Scholar 

  13. Buyanov RA, Molchanov VV (1996) Application of the method of mechanochemical activation in low-waste energy-saving technologies for the production of catalysts and carriers. J. Chemical Industry 3:152–157

    Google Scholar 

  14. Bang BJH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    Article  Google Scholar 

  15. Mason TJ, Lorimer J (2003) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley, Weinheim, p 303

    Google Scholar 

  16. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin, p 412

    Google Scholar 

  17. Boldyrev VV et al (2009) Fundamental principles of mechanical activation of mechanosynthesis and mechanochemical technologies. Publish.Hous SORAN, Novosibirsk, p 343

    Google Scholar 

  18. Zazhigalov VA, Sachuk OV, Diyuk OA, Starchevskyy VL, Kolotilov SV, Sawlowicz Z, Shcherbakov SM, Zakutevskyy OI (2018) The ultrasonic treatment as a promising method of nanosized oxide CeO2-MoO3 composites preparation. In: Fesenko O, Yatsenko L (eds) Nanochemistry, biotechnology, nanomaterials, and their applications, and their applications, Springer Proceedings in Physics 214. Springer International Publishing AG, part of Springer Nature, Cham, pp 297–308

    Chapter  Google Scholar 

  19. Zazhigalov VA, Wieczorek-Ciurowa K, Sachuk OV, Diyuk EA, Bacherikova IV (2018) Mechanochemical synthesis of nanodispersed molybdenum oxide catalysts. Theor Exp Chem 54(4):225–234

    Article  Google Scholar 

  20. Fierro J, Sanz JSJ, Rojo J (1987) Induced changes in Ceria by thermal treatments under vacuum or hydrogen. J Solid State Chem 66:154–162

    Article  ADS  Google Scholar 

  21. Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilaire L, Le Normand F, Quéméré E, Sauvion GN, Touret O (1991) Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J Chem Soc Faraday Trans 87(10):1601–1609

    Article  Google Scholar 

  22. Marrero-Jerez J, Chinarro E, Peña-Martínez J, Núñez P (2015) CGO20–CuO composites synthesized by the combustion method and characterized by H2-TPR. Ceram Int 41(9):10904–10909

    Article  Google Scholar 

  23. Goswami R, Herman H, Sampath S, Jiang X (2001) Plasma sprayed Mo-Mo oxide nanocomposites: synthesis and characterization. Surf Coat Technol 141(2):220–226

    Article  Google Scholar 

  24. Boudlich D, Haddad M, Nadiri A, Berger R, Kliava J (1998) Mo5+ ions as EPR structural probes in molybdenum phosphate glasses. J Non-Cryst Solids 224:135–142

    Article  ADS  Google Scholar 

  25. Dyrek K, Łabanowska M (1991) Electron paramagnetic resonance investigation of the paramagnetic centres in polycrystalline MoO3. J Chem Soc Faraday Trans 87(7):1003–1009

    Article  Google Scholar 

  26. Il’ichev AN, Kuli-zade AM, Korchak VN (2005) ESR study of the formation of radical anions on oxidized CeO2 and CeO2/ZrO2 adsorbing a CO + O2 mixture O-2. Kinet Catal 46(3):396–402

    Article  Google Scholar 

  27. Jørgensen B, Christiansen SE, Thomsen MLD, Christensen CH (2007) Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate. J Catal 251:332–337

    Article  Google Scholar 

  28. Takei T, Iguchi N, Haruta M (2011) Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Jpn 15(2):80–88

    Article  Google Scholar 

  29. Yoshitake H, Aoki Y, Hemmi S (2006) Mesoporous titania supported-molybdenum catalyst: the formation of a new mesophase and use in ethanol-oxygen catalytic reactions. Microporous Mesoporous Mater 93(1–3):294–303

    Article  Google Scholar 

  30. Beck B, Harth M, Hamilton NG, Carrero C, Uhlrich JJ, Trunschke A, Shaikhutdinov S, Schubert H, Freund H-J, Schlögl R, Sauer J, Schomäcker R (2012) Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. J Catal 296:120–131

    Article  Google Scholar 

  31. Kim D-W, Kim H, Jung Y-S, Song IK, Baeck S-H (2008) Synthesis of tungsten–vanadium mixed oxides for ethanol partial oxidation. J Phys Chem Solids 69:1513–1517

    Article  ADS  Google Scholar 

  32. Tesser R, Maradei V, Di Serio M, Santacesaria E (2004) Kinetics of the oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts prepared by grafting. Eng Chem Res 43:1623–1633

    Article  Google Scholar 

  33. Quaranta NE, Soria J, Corberan VC, Fierro JLG (1997) Selective oxidation of ethanol to acetaldehyde on V2O5/TiO2/SiO2 catalysts effect of TiO2-coating of the silica. Support J Catal 171:1–13

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NASU Programs: Fundamental Research “New Functional Substances and Materials for Chemical Engineering” (project 7–17/18) and the Program for Young Scientists (project 41: “Synthesis of new nanodispersed photocatalysts of environmental protection processes”).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zazhigalov, V.A. et al. (2019). The Effect of Mechanochemical and Ultrasonic Treatments on the Properties of Composition CeO2–MoO3 = 1:1. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_8

Download citation

Publish with us

Policies and ethics