Skip to main content

Electrooxidation of Ethanol on Nickel-Copper Multilayer Metal Hydroxide Electrode

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

Nickel-copper multilayer metal hydroxide electrode was obtained by multilayer coating electrodeposition on copper substrate in polyligand pyrophosphate-ammonia electrolyte by two-pulse potentiostatic method. The alternating layers are Ni-Cu alloy layers of 110–430 nm thickness deposited at a potential of − 1.175 V and the layers of mixture of copper and nickel with their hydroxides of 40–260 nm thickness deposited at a potential of − 1.35 V. Cyclic voltammetry was used to show that the surface coverage of Ni(OH)2/NiOOH redox species of electrode with multilayer coating (4.80 × 10−6 mol cm−2) is higher as compared to electrode with Ni-Cu alloy coating (3.66 × 10−6 mol cm−2) and it is about one order of magnitude higher as compared to the electrode with porous nickel coating. The multilayer electrode shows the catalytic activity toward the ethanol oxidation reaction in alkaline medium. The ratio of the current of ethanol oxidation peak to the current of anodic peak in alkaline solution without ethanol on electrode with multilayer coating is 1.22 times higher as compared to the electrode with alloy coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: a review. Int J Hydrog Energy 42:10142–10157. https://doi.org/10.1016/j.ijhydene.2017.01.117

    Article  Google Scholar 

  2. Bezghiche-Imloul T, Hammache-Makhloufi H, Aitahmed N (2016) Electrocatalytic oxidation of alcohols on Cu2O/Cu thin film electrodeposited on titanium substrate. Surf Rev Lett 23(5):1650041. https://doi.org/10.1142/S0218625X16500414

    Article  ADS  Google Scholar 

  3. Barbosa AFB, Oliveira VL, van Drunen J, Tremiliosi-Filho G (2015) Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: temperature influence and reaction mechanism. J Electroanal Chem 746:31–38. https://doi.org/10.1016/j.jelechem.2015.03.024

    Article  Google Scholar 

  4. Ehsani A, Mahjani MG, Jafarian M, Naeemy A (2012) Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochim Acta 71:128–133. https://doi.org/10.1016/j.electacta.2012.03.107

    Article  Google Scholar 

  5. Zhang J, Li Q, Zhang J, Fan Y (2016) Advanced anode catalysts for direct alcohol fuel cells. In: Wang Y (ed) Nanomaterials for direct alcohol fuel cell. Pan Stanford Publishing, Singapore, pp 15–76

    Google Scholar 

  6. Zhang SJ, Zheng YX, Yuan LS, Zhao LH (2013) Ni-B amorphous alloy nanoparticles modified nanoporous Cu toward ethanol oxidation in alkaline medium. J Power Sources 247:28–436. https://doi.org/10.1016/j.jpowsour.2013.08.129

    Google Scholar 

  7. Nikiforova TG, Stepanova AA, Datskevich OA, Maleev VV (2013) Porous nickel deposits formed in the oxidation of alcohols in an alkaline medium. Rus J Appl Chem 86(11):1713–1718. https://doi.org/10.1134/S107042721311013X

    Article  Google Scholar 

  8. Hassan HB, Hamid ZA (2011) Electrodeposited Ni-Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int J Hydrog Energy 36(8):5117–5127. https://doi.org/10.1016/j.ijhydene.2011.01.024

    Article  Google Scholar 

  9. Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392. https://doi.org/10.1016/j.jpowsour.2008.10.132

    Article  Google Scholar 

  10. Kim JW, Park SM (2005) Electrochemical oxidation of ethanol at nickel hydroxide electrodes in alkaline media studied by electrochemical impedance spectroscopy. J Korean Electrochem Soc 8(3):117–124. https://doi.org/10.5229/JKES.2005.8.3.117

    Article  Google Scholar 

  11. Kim JW, Park SM (2003) In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol. J Electrochem Soc 150(11):E560–E566. https://doi.org/10.1149/1.1613671

    Article  Google Scholar 

  12. Sincheskul A, Pancheva H, Loboichenko V, Avina S, Khrystych O, Pilipenko A (2017) Design of the modified oxide-nickel electrode with improved electrical characteristics. East Eur J Enterp Technol 5(6):23–28

    Google Scholar 

  13. Heli H, Jafarian M, Mahjani MG, Goba F (2004) Electro-oxidation of methanol on copper in alkaline solution. Electrochim Acta 49:4999–5006. https://doi.org/10.1016/j.electacta.2004.06.015

    Article  Google Scholar 

  14. Yuan LS, Zheng YX, Jia ML, Zhang SJ, Wang XL, Peng C (2015) Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim Acta 154:54–62. https://doi.org/10.1016/j.electacta.2014.12.055

    Article  Google Scholar 

  15. Sen Gupta S, Mahapatra SS, Datta J (2004) A potential anode material for the direct alcohol fuel cell. J Power Sources 131:169–174. https://doi.org/10.1016/j.jpowsour.2004.01.009

    Article  Google Scholar 

  16. Antolinia E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145

    Article  Google Scholar 

  17. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrog Energy 33:4367–4376. https://doi.org/10.1016/j.ijhydene.2008.05.075

    Article  Google Scholar 

  18. Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium. J Appl Electrochem 36(8):913–918. https://doi.org/10.1007/s10800-006-9155-6

    Article  Google Scholar 

  19. Jin GP, Ding YF, Zheng PP (2007) Electrodeposition of nickel nanoparticles on functional MWCNT surfaces for ethanol oxidation. J Power Sources 166(1):80–86. https://doi.org/10.1016/j.jpowsour.2006.12.087

    Article  Google Scholar 

  20. Zhang S, Zheng Y, Yuan L, Wang X, Zhao L (2014) In situ synthesis of nickel-boron amorphous alloy nanoparticles electrode on nanoporous copper film/brass plate for ethanol electro-oxidation. Int J Hydrog Energy 39(7):3100–3108. https://doi.org/10.1016/j.ijhydene.2013.12.116

    Article  Google Scholar 

  21. Maizelis AA, Tul’skii GG, Bairachnyi VB, Trubnikova LV (2017) The effect of ligands on contact exchange in the NdFeB-Cu2+-P2O\(_{7}^{4-}\)-NH\(_{4}^{+}\) system. Russ J Electrochem 53(4):417–423. https://doi.org/10.1134/S1023193517040085

    Article  Google Scholar 

  22. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem Interfacial Electrochem 159(2):267–285. https://doi.org/10.1016/S0022--0728(83)80627-5

    Article  Google Scholar 

  23. Maizelis AA, Bairachniy BI, Trubnikova LV, Savitsky BA (2012) The effect of architecture of the Cu/(Ni-Cu) multilayer coatings on their microhardness. Funct Mater 19(2):238–244

    Google Scholar 

  24. Maizelis AA, Bairachniy BA (2017) Copper nucleation on nickel from pyrophosphate-based polyligand electrolyte. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 443–457. https://doi.org/10.1007/978-3-319-92567-7_28

    Google Scholar 

  25. Maizelis A, Bairachniy B (2016) Electrochemical formation of multilayer metal and metal oxide coatings in complex electrolytes. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 557–572. https://doi.org/10.1007/978-3-319-56422-7_41

    Google Scholar 

  26. Gira MJ, Tkacz KP, Hampton JR (2016) Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films. Nano Convergence 3(1):6. https://doi.org/10.1186/s40580-016-0063-0

    Article  Google Scholar 

  27. Maizelis A, Bairachny B (2017) Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited from weak alkaline polyligand electrolyte. J Nano-Electron Phys 9(5):1–7. https://doi.org/10.21272/jnep.9(5).05010

    Article  Google Scholar 

  28. Maizelis A (2017) Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited under different electrolyze modes. In: IEEE 7th international conference on nanomaterials: applications and properties 02NTF13. IEEE. https://doi.org/10.1109/NAP.2017.8190373

  29. Bard AJ, Faulkner LR (2005) Electrochemical methods, fundamentals and applications. Chemical Industry Press, Beijing, p 409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maizelis, A.A. (2019). Electrooxidation of Ethanol on Nickel-Copper Multilayer Metal Hydroxide Electrode. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_4

Download citation

Publish with us

Policies and ethics