Skip to main content

PET Ion-Track Membranes: Formation Features and Basic Applications

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

This chapter is a brief review of the formation features of PET ion-track membranes with different pore parameters and an overview of their basic applications. The main aspects of membrane formation with pores of cylindrical and conical shapes are considered as well as an effect of irradiation and etching modes for the production of micro- and nanoporous materials are analyzed. Thus, this chapter considers the influence of irradiation fluence on the parameters of PET ion-track membranes and discusses the optimal ratio of fluence-diameter for practical applications. The effect of etching time and temperature on the pore diameters and the thicknesses of PET ion-track membranes with cylindrical pores are considered. The way in which PET ion-track membranes with asymmetric (conical) pores are formed is shown, and the effect of etching modes on the pore parameters is discussed. Moreover, PET ion-track membranes have a high potential for a wide range of technological applications, which are considered here, for example, water purification, direct and reverse osmosis, and template synthesis of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoppe K, Fahrner WR, Fink D et al (2008) An ion track based approach to nano- and micro-electronics. Nucl Instrum Methods Phys Res B 266:1642–1646. https://doi.org/10.1016/j.nimb.2007.12.069

    Article  ADS  Google Scholar 

  2. Fink D (2004) Fundamentals of ion-irradiated polymers: fundamentals and applications, vol 1. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  3. Stamatialis DF, Papenburg BJ, Gironés M et al (2008) Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J Membr Sci 308:1–34. https://doi.org/10.1016/j.memsci.2007.09.059

    Article  Google Scholar 

  4. Sartowska B, Starosta W, Apel P et al (2013) Polymeric track etched membranes - application for advanced porous structures formation. Acta Phys Pol A 123:819–821. https://doi.org/10.12693/APhysPolA.123.819

    Article  Google Scholar 

  5. Korolkov IV, Mashentseva AA, Güven O et al (2015) Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process. Nucl Instrum Methods Phys. https://doi.org/10.1016/j.nimb.2015.10.031

    Article  Google Scholar 

  6. Korolkov IV, Gorin YG, Yeszhanov AB et al (2018) Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater Chem Phys 205:55–63. https://doi.org/10.1016/j.matchemphys.2017.11.006

    Article  Google Scholar 

  7. Apel PY, Blonskaya IV, Dmitriev SN et al (2007) Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 18:1–7. https://doi.org/10.1088/0957-4484/18/30/305302

    Article  Google Scholar 

  8. Shumskaya AE, Kaniukov EY, Kozlovskiy AL et al (2017) Template synthesis and magnetic characterization of FeNi nanotubes. Prog Electromagn Res C 75:23–30. https://doi.org/10.2528/PIERC17030606

    Article  Google Scholar 

  9. Korolkov IV, Borgekov DB, Mashentseva AA (2017) The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chem Pap 71:2353–2358. https://doi.org/10.1007/s11696-017-0229-1

    Article  Google Scholar 

  10. Kaniukov EY, Kozlovsky AL, Shlimas DI et al (2017) Electrochemically deposited copper nanotubes. J Surf Invest X-ray Synchrotron Neutron Tech 11:270–275. https://doi.org/10.1134/S1027451017010281

    Article  Google Scholar 

  11. Kaniukov E, Yakimchuk D, Arzumanyan G et al (2017) Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos Mag 6435:1–16. https://doi.org/10.1080/14786435.2017.1330562

    Article  Google Scholar 

  12. Demyanov SE, Kaniukov EY, Petrov AV, Belonogov EK (2008) Nanostructures of Si/SiO2/metal systems with tracks of fast heavy ions. Bull Russ Acad Sci Phys 72:1193–1195. https://doi.org/10.3103/S1062873808090050

    Article  Google Scholar 

  13. Kozlovskiy AL, Korolkov IV, Kalkabay G et al (2017) Comprehensive study of Ni nanotubes for bioapplications : from synthesis to payloads attaching. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/3060972

    Article  Google Scholar 

  14. Sivakov V, Kaniukov EY, Petrov AV et al (2014) Silver nanostructures formation in porous Si/SiO2 matrix. J Cryst Growth 400:21–26. https://doi.org/10.1016/j.jcrysgro.2014.04.024

    Article  ADS  Google Scholar 

  15. Demyanov S, Kaniukov E, Petrov A, Sivakov V (2014) Positive magnetoresistive effect in Si/SiO2(Cu/Ni) nanostructures. Sensors Actuators A Phys 216:64–68. https://doi.org/10.1016/j.sna.2014.04.022

    Article  Google Scholar 

  16. Kaniukov EY, Shumskaya EE, Yakimchuk DV et al (2017) Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J Contemp Phys Armenian Acad Sci 52:155–160. https://doi.org/10.3103/S1068337217020098

    Article  ADS  Google Scholar 

  17. Apel P, Spohr R, Trautmann C, Vutsadakis V (1999) Track structure in polyethylene terephthalate irradiated by heavy ions: Let dependence of track diameter. Radiat Meas 31:51–56. https://doi.org/10.1016/S1350-4487(99)00075-X

    Article  Google Scholar 

  18. Korolkov IV, Mashentseva AA, Güven O et al (2014) The effect of oxidizing agents / systems on the properties of track-etched PET membranes. Polym Degrad Stab 107:150–157. https://doi.org/10.1016/j.polymdegradstab.2014.05.008

    Article  Google Scholar 

  19. Apel PY, Dmitriev SN (2011) Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv Nat Sci Nanosci Nanotechnol 2:13002. https://doi.org/10.1088/2043-6262/2/1/013002

    Article  ADS  Google Scholar 

  20. Kaniukov EY, Ustarroz J, Yakimchuk DV et al (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27:115305. https://doi.org/10.1088/0957-4484/27/11/115305

    Article  ADS  Google Scholar 

  21. Mashentseva AA, Orazbaeva DS, Gorin EG et al (2013) Calculation of bulk etch rate’s semi-empirical equation for polymer track membranes in stationary and dynamic modes. Kazn Bull Chem Ser 1:69–70

    Google Scholar 

  22. Kozlovskiy A, Borgekov K, Zdorovets M et al (2017) Application of ion-track membranes in processes of direct and reverse osmosis. Proc Natl Acad Sci Belarus Phys Ser 1:45–51

    Google Scholar 

  23. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966. https://doi.org/10.1126/science.266.5193.1961

    Article  ADS  Google Scholar 

  24. Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3:860–883. https://doi.org/10.3762/bjnano.3.97

    Article  Google Scholar 

  25. Toimil Molares ME, Buschmann V, Dobrev D et al (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mater 13:62–65. https://doi.org/10.1002/1521-4095(200101)13:1<62::AID-ADMA62>3.0.CO;2-7

    Article  Google Scholar 

  26. Son SJ, Reichel J, He B et al (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317. https://doi.org/10.1021/ja0517365

    Article  Google Scholar 

  27. Hillebrenner H, Buyukserin F, Stewart JD, Martin CR (2006) Template synthesized nanotubes for biomedical delivery applications. Nanomedicine (Lond) 1:39–50. https://doi.org/10.2217/17435889.1.1.39

    Article  Google Scholar 

  28. Kozlovskiy AL, Shlimas DI, Shumskaya EE, Kaniukov EY (2017) Effect of parameters of electroplating on structural and morphologic features of nickel nanotubes. Phys Metals Metallogr 118:174–179. https://doi.org/10.1134/S0031918X17020065

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozlovskiy, A. et al. (2019). PET Ion-Track Membranes: Formation Features and Basic Applications. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_31

Download citation

Publish with us

Policies and ethics