Skip to main content

Simulation of Tunneling Conductivity and Controlled Percolation In 3D Nanotube-Insulator Composite System

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

Analysis of percolation phenomenon in the system of straight nanotubes is carried out, and an appropriate model of the process is proposed. The algorithm for finding the probability of nanotubes percolation is implemented using three-dimensional graphics visualization tools. The effect of geometric size and concentration of the nanotubes on the percolation probability was investigated. Based on the analysis of the dependence of percolation probability on the values of the dispersion angles determining the nanotubes orientation, the basic regularities of the conductive cluster formation under the influence of an electric field are established. The optimal parameters of the nanotube system with field-controlled percolation were determined. It is shown that conductivity of random nanotube network formed in the dielectric medium is simulated considering tunneling conductivity between individual nanotubes being in close proximity and taking into account intrinsic conductivity of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao WS, Meguid SA, Zhu ZH, Meguid MJ (2011) Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 22(48):485704. https://doi.org/10.1088/0957-4484/22/48/485704

    Article  Google Scholar 

  2. Yu Y, Song G, Sun L (2010) Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes. J Appl Phys 108:084319. https://doi.org/10.1063/1.3499628

    Article  ADS  Google Scholar 

  3. Karbovnyk I, Olenych I, Aksimentyeva O, Klym H, Dzendzelyuk O, Olenych Y, Hrushetska O (2016) Effect of radiation on the electrical properties of PEDOT-based nanocomposites. Nanoscale Res Lett 11(1):84. https://doi.org/10.1186/s11671-016-1293-0

    Article  ADS  Google Scholar 

  4. Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95. https://doi.org/10.5755/j01.ms.21.1.5189

    Article  Google Scholar 

  5. Karbovnyk I, Collins J, Bolesta I, Stelmashchuk A, Kolkevych A, Velupillai S, Klym H, Fedyshyn O, Tymoshuk S, Kolych I (2015) Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies. Nanoscale Res Lett 10:151. https://doi.org/10.1186/s11671-015-0855-x

    Article  ADS  Google Scholar 

  6. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. https://doi.org/10.1007/s11665-016-1931-9

    Article  Google Scholar 

  7. Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848. https://doi.org/10.1016/j.microrel.2014.07.137

    Article  Google Scholar 

  8. Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011. https://doi.org/10.1088/1742-6596/289/1/012011

    Article  Google Scholar 

  9. Klym H, Hadzaman I, Shpotyuk O, Brunner M (2014) Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Res Lett 9(1):149. https://doi.org/10.1186/1556-276X-9-149

    Article  ADS  Google Scholar 

  10. Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th Int Conf Microelectron Proc (MIEL):239–242. https://doi.org/10.1109/MIEL.2010.5490492

  11. Olenych IB, Aksimentyeva OI, Karbovnyk ID, Olenych YI, Yarytska LI (2014) Preparation and properties of hybrid poly (3,4-ethylenedioxythiophene)–carbon nanotubes composites. Proc Int Conf Nanomater Appl Prop 3(2):02NNSA13-1 13-3

    Google Scholar 

  12. Tarasevich YY (2002) Percolation: theory, applications, algorithms. Editorial URSS (in Russian), Moscow

    Google Scholar 

  13. Sahimi M (1994) Applications of percolation theory. Taylor & Francis, London

    Google Scholar 

  14. Bellucci S, Bolesta I, Cestelli Guidi M, Karbovnyk I, Lesivciv V, Micciulla F, Pastore R, Popov AI, Velgosh S (2007) Cadmium clusters in CdI2 layered crystals: the influence on the optical properties. J Phys Condens Matter 19(39):395015. https://doi.org/10.1088/0953-8984/19/39/395015

    Article  Google Scholar 

  15. Hadzaman I, Klym H, Shpotyuk O (2014) Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. Int J Nanotechnol 11(9-10-11):843–853. https://doi.org/10.1504/IJNT.2014.063793

    Article  Google Scholar 

  16. Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75(4):041120. https://doi.org/10.1103/PhysRevE.75.041120

    Article  ADS  Google Scholar 

  17. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  Google Scholar 

  18. Lu W, Chou TW, Thostenson ET (2010) A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl Phys Lett 96(22):223106. https://doi.org/10.1063/1.3443731

    Article  ADS  Google Scholar 

  19. Hu N, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T (2008) The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 19(21):215701. https://doi.org/10.1088/0957-4484/19/21/215701

    Article  ADS  Google Scholar 

  20. Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72(12):121404. https://doi.org/10.1103/PhysRevB.72.121404

    Article  ADS  Google Scholar 

  21. Massey MK, Kotsialos A, Volpati D, Vissol-Gaudin E, Pearson C, Bowen L, Obara B, Zeze DA, Groves C, Petty MC (2016) Evolution of electronic circuits using carbon nanotube composites. Sci Rep 6:32197. https://doi.org/10.1038/srep32197

    Article  ADS  Google Scholar 

  22. Stelmashchuk A, Karbovnyk I, Klym H, Berezko O, Kostiv Y, Lys R (2017) Modeling and quantitative analysis of connectivity and conductivity in random networks of nanotubes. EastEur J Enterp Technol 5(12 (89)):4–12. https://doi.org/10.15587/1729-4061.2017.112037

    Article  Google Scholar 

  23. Karbovnyk I, Olenych Y, Lukashevych D, Chalyy D, Girnyk I, Rudko M, Klym H (2018) Low temperature electrical behavior of CNT-based nanocomposites. Proceedings of the 2018 IEEE 8th international conference on nanomateroals applications & properties (NAP-2018):01SPN80-1-4

    Google Scholar 

  24. Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J Appl Phys 111(9):093726. https://doi.org/10.1063/1.4716010

    Article  ADS  Google Scholar 

  25. Fang W, Jang HW, Leung SN (2015) Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Compos Part B 83:184–193. https://doi.org/10.1016/j.compositesb.2015.08.047

    Article  Google Scholar 

  26. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207. https://doi.org/10.1103/PhysRevB.31.6207

    Article  ADS  Google Scholar 

  27. Tamura R, Tsukada M (1997) Electronic transport in carbon nanotube junctions. Solid State Commun 101(8):601–605. https://doi.org/10.1016/S0038-1098(96)00761-2

    Article  ADS  Google Scholar 

  28. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes, vol 3. Imperial College Press, London

    Book  Google Scholar 

  29. Imry Y, Landauer R (1999) Conductance viewed as transmission. Rev Mod Phys 71(2):S306. https://doi.org/10.1103/RevModPhys.71.S306

    Article  Google Scholar 

  30. Buldum A, Lu JP (2001) Contact resistance between carbon nanotubes. Phys Rev B 63(16):161403. https://doi.org/10.1103/PhysRevB.63.161403

    Article  ADS  Google Scholar 

  31. Naeemi A, Meindl ID (2009) Performance modeling for carbon nanotube interconnects. In: Carbon nanotube electronics. Springer, New York, pp 163–190

    Chapter  Google Scholar 

  32. Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58(20):13870. https://doi.org/10.1103/PhysRevB.58.13870

    Article  ADS  Google Scholar 

  33. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104. https://doi.org/10.1103/PhysRevB.62.13104

    Article  ADS  Google Scholar 

  34. Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34(6):1793–1803. https://doi.org/10.1063/1.170268

    Article  ADS  Google Scholar 

  35. Li XS (2005) An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans Math Softw 31(3):302–325. https://doi.org/10.1145/1089014.1089017

    Article  MathSciNet  MATH  Google Scholar 

  36. Li XS, Demmel JW, Gilbert IR, Grigori L, Shao M, Yamazaki I (1999) SuperLU users’ guide. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  37. Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JW (1999) A supernodal approach to sparse partial pivoting. SIAM J Matrix Anal Appl 20(3):720–755. https://doi.org/10.1137/S0895479895291765

    Article  MathSciNet  MATH  Google Scholar 

  38. Stelmashchuk A, Karbovnyk I, Klym H, Lukashevych D, Chalyy D (2017) Simulation of the tunelling conductivity in nanotube/dielectric composite. 37th international conference on electronics and nanotechnology (ELNANO):209–212. https://doi.org/10.1109/ELNANO.2017.7939751

  39. Stelmashchuk A, Karbovnyk I, Klym H (2016) Computer simulations of nanotube networks in dielectric matrix. 13th international conference on modern problems of radio engineering telecommunications and computer science (TCSET): 415–417. https://doi.org/10.1109/TCSET.2016.7452074

  40. Stelmashchuk A, Karbovnyk I, Chalyy D, Lukashevych D, Klym H (2017) Parametric modeling of conductivity in percolating nanotube network. First Ukraine conference on electrical and computer engineering (UKRCON):740–743. https://doi.org/10.1109/UKRCON.2017.8100343

  41. Olenych Y, Karbovnyk I, Klym H (2018) Computer simulation of field-controlled percolation in 3D system of straight nanotubes. XIV-th international conference on perspective technologies and methods in MEMS design (MEMSTECH):48–51. https://doi.org/10.1109/MEMSTECH.2018.8365699

  42. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249. https://doi.org/10.1016/j.compscitech.2008.01.006

    Article  Google Scholar 

  43. Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115(44):21685–21690. https://doi.org/10.1021/jp207388n

    Article  Google Scholar 

  44. Olenych Y, Karbovnyk I, Shmygelsky Y, Klym H (2018) Modeling of percolation phenomena in 3D nanotube system. Electron Inf Technol 9:40–47. http://elit.lnu.edu.ua/pdf/9_4.pdf

    Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karbovnyk, I., Olenych, Y., Chalyy, D., Lukashevych, D., Klym, H., Stelmashchuk, A. (2019). Simulation of Tunneling Conductivity and Controlled Percolation In 3D Nanotube-Insulator Composite System. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_21

Download citation

Publish with us

Policies and ethics