Skip to main content

The Effect of Ultrasonic Treatment on the Physical–Chemical Properties of the ZnO/MoO3 System

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

The influence of the ultrasonic treatment (UST) of the ZnO/MoO3 oxide system with atomic ratios of Zn/Mo = 15:85, 25:75, 50:50, and 75:25 on their properties was investigated. Using X-ray diffraction (XRD) analysis, it was found that in the sonochemical activation process, the phase transformation in molybdenum oxide, the formation of molybdenum suboxides (Mo4O11, Mo8O23), and the triclinic modification of the zinc molybdate α-ZnMoO4 occurred. The structure and morphology of ZnMoO4, which were characterized by transmission electron microscopy and scanning electron microscopy analyses, show the formation of nanodispersed needle-like crystals. It was found that as a result of sonochemical treatment, the grinding and increase in the specific surface area of the compositions take place. The samples obtained after UST demonstrate very promising results in the oxidative dehydrogenation of ethanol to acetaldehyde and the treated composition with a ratio of Zn/Mo = 50:50 permits an acetaldehyde yield equal to 94% to be obtained at a reaction temperature of 255 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bang JH, Suslick KS (2010) Application of ultrasound to the synthesis of nanostructural materials. Adv Mater 22:1039–1059

    Article  Google Scholar 

  2. Chatel G (2018) How sonochemistry contributes to green chemistry? Ultrasonics Chem 40:117–122

    Google Scholar 

  3. Mason TJ, Lorimer JP (2002) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Copyright, Weinheim, p 293

    Book  Google Scholar 

  4. Yusof NSM, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M (2016) Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem 29:568–576

    Article  Google Scholar 

  5. Leong T, Ashokkumar M, Kentish S (2011) The fundamentals of power ultrasound – a review. Acoustics Australia 39(2):54–63

    Google Scholar 

  6. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29(1):295–326

    Article  ADS  Google Scholar 

  7. Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26:443–451

    Article  Google Scholar 

  8. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38(4):1215–1249

    Article  Google Scholar 

  9. Choi GK, Kim JR, Yoon SH, Hong KS (2007) Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J Eur Ceram Soc 27:3063–3067

    Article  Google Scholar 

  10. Ryu JH, Koo SM, Yoon JW, Lim CS, Shim KB (2006) Synthesis of nanocrystalline MMoO4 (M = Ni, Zn) phosphors via a citrate complex route assisted by microwave irradiation and their photoluminescence. Mater Lett 60:1702–1705

    Article  Google Scholar 

  11. Zhang G, Yu S, Yang Y, Jiang W, Zhang S, Huang B (2010) Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4×0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method. J Cryst Growth 312:1866–1874

    Article  ADS  Google Scholar 

  12. Li Y, Weisheng G, Bo B, Kaijie G (2009) Yeast-directed hydrothermal synthesis of ZnMoO4 hollow microspheres and its photocatalytic degradation of auramine O. International conference on energy and environment technology IEEE. https://doi.org/10.1109/ICEET.2009.631

  13. Ramezani M, Hosseinpour-Mashkani SM, Sobhani-Nasab A, Estarki HG (2015) Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J Mater Sci Mater Electron 26(10):7588–7594

    Article  Google Scholar 

  14. Sotani N, Suzuki T, Nakamura K, Eda K, Hasegawa S (2001) Change in bulk and surface structure of mixed MoO3-ZnO oxide by heat treatment in air and in hydrogen. J Mater Sci 36:703–713

    Article  ADS  Google Scholar 

  15. Nakamura K, Eda K, Hasegawa S, Sotani N (1999) Reactivity for isomerization of 1-butene on the mixed MoO3–ZnO oxide catalyst. Appl Catal A Gen 178(2):167–176

    Article  Google Scholar 

  16. Maezawa A, Okamoto Y, Imanaka T (1987) Physicochemical characterization of ZnO/Al2O3 and ZnO–MoO3/Al2O3 catalysts. J Chem Soc Faraday Trans 1 Phys Chem Condensed Phases 83(3):665–674

    Google Scholar 

  17. Sachuk OV, Zazhigalov VO, Kuznetsova LS, Tsiba MM (2016) Properties of Zn-Mo oxide systems, synthesized by mechano-chemical processes. Chem Phys Surface Technol 7(3):309–321

    Google Scholar 

  18. Zazhigalov VA, Sachuk EV, Kopachevskaya NS, Bacherikova IV, Wieczorek-Ciurowa K, Shcherbakov SN (2016) Mechanochemical synthesis of nanodispersed compounds in the ZnO–MoO3 system. Teor Exp Chem 52(2):97–103

    Article  Google Scholar 

  19. Sachuk O, Zazhigalov V, Kobuley O (2016) Mechanochemical activation and photocatalytic activity of oxide zinc-molybdenum composition. NaUKMA 183:26–30

    Google Scholar 

  20. Pat.116067 Ukraine, MPK C01G 39/02, C01G 9/02. Patent for utility model Mechanochemical method of obtaining nanosized B-ZnO4 rods // Sachuk O.V., Zazhigalov, V.O.; The owner is the Institute of Sorption and Endoecology Problems of the National Academy of Sciences of Ukraine - № u 2016 10715; stated 25.10.2016; posted 10.05.2017. Bul №

    Google Scholar 

  21. Zazhigalov VA, Sachuk OV, Diyuk OA, Starchevskyy VL, Kolotilov SV, Sawlowicz Z, Shcherbakov SM, Zakutevskyy OI (2018) The ultrasonic treatment as a promising method of nanosized oxide CeO2-MoO3 composites preparation, vol 214. Springer, Cham, pp 294–309

    Google Scholar 

  22. Burch R (1978) Preparation of high surface area reduced molybdenum oxide catalysts. J Chem Soc Faraday Trans 1(74):2982–2990

    Article  Google Scholar 

  23. Ressler T, Jentoft RE, Wienold J, Gunter MM, Timpe O (2000) In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J Phys Chem B 104(6):360–370

    Google Scholar 

  24. Lalik E (2011) Kinetic analysis of reduction of MoO3 to MoO2. Catal Today 169:85–92

    Article  Google Scholar 

  25. Słoczynski J, Bobinski W (1991) Autocatalytic effect in the processes of metal oxide reduction. II. Kinetics of molybdenum oxide reduction. J Solid State Chem 92:436–348

    Article  ADS  Google Scholar 

  26. Słoczyński J (1995) Kinetics and mechanism of molybdenum (VI) oxide reduction. J Solid State Chem 118:84–92

    Article  ADS  Google Scholar 

  27. Schulmeyer WV, Ortner HM (2002) Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater 20:261–269

    Article  Google Scholar 

  28. Enneti RK, Wolfe TA (2012) Agglomeration during reduction of MoO3. Int J Refract Met Hard Mater 31:47–50

    Article  Google Scholar 

  29. Dang J, Zhang G-H, Chou K-C (2014) Phase transitions and morphology evolutions during hydrogen reduction of MoO3 to MoO2. High Temp. Mater. Proc. 33(4):305–312

    Article  Google Scholar 

  30. Margulis MA (1984) Basics of AcoustoChemistry (chemical reactions in sound fields) // M .: Higher. sch.

    Google Scholar 

  31. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mat 22:1039–1059

    Article  Google Scholar 

  32. Zazhigalov VA, Haber J, Stoch J, Kharlamov AI, Bogutskaya LV, Bacherikova IV, Kowal A (1997) Influence of the mechanochemical treatment on the reactivity of V-containing oxide systems. Solid State Ionics 101–103:1257–1263

    Article  Google Scholar 

  33. Bogutskaya LV, Khalameida SV, Zazhigalov VA, Kharlamov AI, Lyashenko LV, Byl’ OG (1999) Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor Experim Chem 35(4):242–246

    Article  Google Scholar 

  34. Keereeta Y, Thongtem T, Thongtem S (2014) Effect of medium solvent ratios on morphologies and optical properties of α-ZnMoO4, β-ZnMoO4 and ZnMoO4·0.8H2O crystals synthesized by microwave-hydrothermal/solvothermal method. Superlattice Microst 69:253–264

    Article  ADS  Google Scholar 

  35. Karekar SE, Bhanvase BA, Sonawane SH, Deosarkar MP, Pinjari DV, Pandit AB (2015) Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: advantage over conventional method. Chem Eng Process 87:51–59

    Article  Google Scholar 

  36. Pat.117264 Ukraine, MPK C01G 39/02, C01G 9/02. Patent for utility model Sonochemical method for obtaining a nanosized phase of alpha-ZnMoO4 // Sachuk OV, Zazhigalov VO, Starchevskii VL; The owner is the Institute of Sorption and Endoecology Problems of the National Academy of Sciences of Ukraine - № u 2016 12989; stated 20.12.2016; posted 26.06.2017. Bul №12

    Google Scholar 

  37. Chiang TH, Yeh HC (2013) The synthesis of α-MoO3 by ethylene glycol. Materials 6:4609–4625

    Article  ADS  Google Scholar 

  38. Irmawati R, Shafizah M (2009) The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int J Basic Appl Sci 9(9):241–244

    Google Scholar 

  39. Cavalcante LS, Moraes E, Almeida MAP, Dalmaschio CJ, Batista NC, Varela JA, Longo E, Siu Li M, Andrés J, Beltrán A (2013) A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54:13–25

    Article  Google Scholar 

  40. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6

    Article  Google Scholar 

  41. Gruber H, Krautz E, Fritzer HP, Gatterer K, Popitsch A (1986) Changes of electrical conductivity, magnetic susceptibility, and IR spectra in the ternary system Mon-xWxO3n-1. Phys Status Solidi 98:297–304

    Article  ADS  Google Scholar 

  42. Mancheva M, Iordanova R, Kamenova AA, Stoyanova A, Dimitriev Y, Kunev B (2007) Influence of mechanical treatment on morphology of the MoO3 nanocrystals. Nanosci Nanotechnol 7:74–76

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by NASU Programs: Fundamental Research “New Functional Substances and Materials for Chemical Engineering” (project 7-17/18) and Program for Young Scientists (project 41: “Synthesis of new nanodispersed photocatalysts of environmental protection processes”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Zazhigalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zazhigalov, V.O., Sachuk, O.V., Diyuk, O.A., Kopachevska, N.S., Starchevskyy, V.L., Kurmach, M.M. (2019). The Effect of Ultrasonic Treatment on the Physical–Chemical Properties of the ZnO/MoO3 System. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_11

Download citation

Publish with us

Policies and ethics