Skip to main content

New Methacrylic Polymers with Heterocyclic Analogs of Stilbene in Side Chain – Promising Materials for Optoelectronics

  • Conference paper
  • First Online:
Book cover Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Included in the following conference series:

Abstract

Organic and polymeric nonlinear optical (NLO) materials have continuously drawn great interest due to their several advantages superior to conventional inorganics, such as large nonlinear optical coefficient, ultrafast response, wide response wave band, high optical damage threshold, and easy combination and modification. Generally, desired NLO materials should exhibit a high NLO property, good optical transparency, and thermal stability. Designs and syntheses of effective chromophores are very important for acquiring desired NLO materials [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang C-Z et al (2010) Significant effect of Bromo substituents on nonlinear optical properties of polymer and chromophores. J Phys Chem B 114:42–48

    Article  Google Scholar 

  2. Gulakova EN et al (2011) Synthesis and structure of styryl-substituted azines. Russ J Organ Chem 47(2):245–252

    Article  Google Scholar 

  3. Liao L, Li Y et al (2014) STM investigation of the photoisomerization and photodimerization of stilbene derivatives on HOPG surface. J Phys Chem C 118:15963–15969

    Article  Google Scholar 

  4. Grad ME, Simu GM et al (2008) Synthesis and colour assessment of some new stilbene azo dyes. Rev Roum Chim 53(2):107–111

    Google Scholar 

  5. Budyka M, Oshkin I (2011) Comparative semiempirical and DFT study of styrylnaphthalenes and styrylquinolines and their photocyclization products. Int J Quantum Chem 111:3673–3680

    Google Scholar 

  6. Gulakova EN et al (2014) Regiospecific C-N photocyclization of 2-styrylquinolines. J Org Chem 79(12):5533–5537

    Article  Google Scholar 

  7. Budyka MF et al (2010) The effect of substituents in the styryl moiety on the photocyclization of 4-styrylquinoline derivatives. High Energy Chemistry 44(5):404–411

    Article  Google Scholar 

  8. Oshkin V, Budyka M (2010) Quantum_chemical study of the photoisomerization and photocyclization reactions of styrylquinolines: potential energy surfaces. High Energy Chemistry 44(6):472–481

    Article  Google Scholar 

  9. Walko M (2009) Molecular and biomolecular switches, Dissertation, University of Groningen

    Google Scholar 

  10. Deligeorgiev T, Vasilev A et al (2010) Styryl dyes – synthesis and applications during the last 15 years. Soc Dyers Col, Color Technol 126:55–80

    Google Scholar 

  11. Ayaz N et al (2012) Polymers based on methacrylate bearing coumarin side group: synthesis via free radical polymerization, monomer reactivity ratios, dielectric behavior, and thermal stabilities. ISRN Polym Sci 352759:1–13. https://doi.org/10.5402/2012/352759

    Article  Google Scholar 

  12. Budyka M, Potashova N (2012) Design of fully photonic molecular logic gates based on the supramolecular bis-styrylquinoline dyad. Nanotechnol Russ 7:280–287

    Article  Google Scholar 

  13. Podeszwa B et al (2007) Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg Med Chem Lett 17:6138–6141

    Article  Google Scholar 

  14. Mao F, Yan J, Li J et al (2014) New multi-target-directed small molecules against Alzheimer’s disease: a combination of resveratrol and clioquinol. Org Biomol Chem 12:5936–5944

    Article  Google Scholar 

  15. Mekouar K, Mouscadet J-F et al (1998) Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem 41:2846–2857

    Article  Google Scholar 

  16. Budyka M et al (2008) Photoisomerization of 2-styrylquinoline in neutral and protonated forms. High Energy Chem 42(6):446–453

    Article  Google Scholar 

  17. Derkowska-Zielinska B, Skowronski L, Biitseva A et al (2017) Optical characterization of heterocyclic azo dyes containing polymers thin films. Appl Surf Sci 421:361–366. https://doi.org/10.1016/j.apsusc.2016.12.080

    Article  ADS  Google Scholar 

  18. Krupka O, Smokal V, Derkowska-Zielinska B, et al (2017) Optical and photochemical properties of diarylethylenes. Proceedings of SPIE 10440: 104400C. https://doi.org/10.1117/12.2278118

  19. Derkowska-Zielinska B, Krupka O, Smokal V et al (2016) Optical properties of disperse dyes doped poly(methyl methacrylate). Mol Cryst Liq Cryst 639:87–93. https://doi.org/10.1080/15421406.2016.1254585

    Article  Google Scholar 

  20. Smokal V, Czaplicki R, Derkowska B ea (2007) Synthesis and study of nonlinear optical properties of oxazolone containing polymers. Synth Met 157(18–20):708–712. https://doi.org/10.1016/j.synthmet.2007.07.006

    Article  Google Scholar 

  21. Derkowska-Zielinska B, Skowronski L, Sypniewska M et al (2018) Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Opt Mater 85:391–398. https://doi.org/10.1016/j.optmat.2018.09.008

    Article  ADS  Google Scholar 

  22. Derkowska-Zielinska B, Skowronski L, Kozlowski T et al (2015) Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Opt Mater 49:325–329. https://doi.org/10.1016/j.optmat.2015.10.001

    Article  ADS  Google Scholar 

  23. Alfrey TC, Price C (1947) Relative reactivities in vinyl copolymerization. J Polym Sci 2(1):101–106

    Article  ADS  Google Scholar 

  24. Kharchenko O et al (2018) Reactivity and polymerisation ability of styrilquinaline containing metacrylic monomers. Chem Chem Technol 12(1):47–52. https://doi.org/10.23939/chcht12.01.047

    Article  MathSciNet  Google Scholar 

  25. Kharchenko O et al (2018) Synthesis and photophysical properties of new styrylquinoline-containing polymers. Mol Cryst Liq Cryst 661:38–44. https://doi.org/10.1080/15421406.2018.1460236

    Article  Google Scholar 

  26. Barberis V, Mikroyannidis J (2006) Synthesis and optical properties of aluminum and zinc quinolates through styryl substituent in 2-position. Synth Met 156:865–871. https://doi.org/10.1016/j.synthmet.2006.05.007

    Article  Google Scholar 

  27. Derkowska-Zielinska B, Figà V, Krupka O et al (2015) Optical properties of polymethacrylate with styrylquinoline side chains. Proc SPIE 9652:965216. https://doi.org/10.1117/12.2194840

    Article  Google Scholar 

  28. Fineman M, Ross S (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5(2):259–265

    Article  ADS  Google Scholar 

  29. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John Wiley & Sons, New York

    Google Scholar 

  30. Budyka M (2008) Photochemical properties of amino and nitro derivatives of 2- and 4-styrylquinolines and their hydrochlorides. High Energy Chem 42(3):220–226. https://doi.org/10.1134/S0018143908030065

    Article  Google Scholar 

  31. Fedus M, Smokal V, Krupka O et al (2011) Synthesis and non-resonant nonlinear optical properties of push-pull side-chain azobenzene polymers. J Nonlinear Opt Phys Mater 20:1–13. https://doi.org/10.1142/S021886351100584X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krupka, O., Kharchenko, O., Smokal, V., Kysil, A., Kolendo, A. (2019). New Methacrylic Polymers with Heterocyclic Analogs of Stilbene in Side Chain – Promising Materials for Optoelectronics. In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_9

Download citation

Publish with us

Policies and ethics