Skip to main content

Based on Pneumatic Photonic Structures, High-Accuracy Measurement Procedure for the Universal Gas Constant

  • Conference paper
  • First Online:
  • 361 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Abstract

In this work, an approach is proposed to determine the universal molar gas constant R with approximately ten significant digit accuracy that is based on extra accurate volume controlling and highly sensitive pressure measurements in the framework of scale echeloning procedure. An essential moment of the method is uniting the results of two connected measurement scales with the relative standard uncertainty near 10 āˆ’5 to obtain a higher precise level. A calibrated stable area of fixed temperature is used in the vicinity of the triple point of water. The gas-filled 1D elastic pneumatic photonic crystal is used as an optical indicator of pressure uniting several scales of pressure magnitudes. The pressure gauge includes layered elastic platform, optical fibers, and switching valves, all enclosed into a chamber. With this aim, we have investigated the pneumatic photonic crystal bandgap structure and light reflection changes under external pressure. At the chosen parameters, the two-scale device may cover the pressure interval (0, 10) bar with accuracy near 1 nbar. A self-consistent iteration procedure increasing initial accuracy of parameters and the molar gas constant to the level of volume and pressure accuracy measurements is proposed and tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newell DB, Cabiati F, Fischer J, Fujii K, Karshenboim SG, Margolis HS, de Mirandes E, Mohr PJ, Nez F, Pachucki K, Quinn TJ, Taylor BN, Wang M, Wood BM, Zhang Z (2018) The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia 55:L13ā€“L16

    ArticleĀ  Google ScholarĀ 

  2. Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants. J Phys Chem Ref Data 41:043109

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. Karshenboim SG (2017) Adjusted recommended values of the fundamental physical constants. EurPhysJST 172:385ā€“397

    ADSĀ  Google ScholarĀ 

  4. Bartl G et al (2017) A new 28Si single crystal: counting the atoms for the new kilogram definition. Metrologia 54:693ā€“727

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. Vocke RD Jr, Rabb SA, Turk GC (2014) Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram. Metrologia 51:361ā€“375

    ArticleĀ  ADSĀ  Google ScholarĀ 

  6. Azuma Y, Barat P, Bartl G et al (2015) Improved measurement results for the Avogadro constant using a 28Si-enriched crystal. Metrologia 52:360ā€“375

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Flowers JL, Petley BW (2001) Progress in our knowledge of the fundamental constants of physics. Rep Prog Phys 64:1191ā€“1246

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Sortais Y et al (2000) 87Rb verses 133Cs in cold atom fountains: a comparison. IEEE Trans Ultrason Ferroelectr Freq Control 47:1093ā€“1097

    ArticleĀ  Google ScholarĀ 

  9. Taylor BN, Phillips WD (eds) (1984). Precision measurement and fundamental constants II. National Bureau of Standards (U.S.), Special Publication 617

    Google ScholarĀ 

  10. Aliezer S, Ghatak A, Hora H (2002) Fundamentals of equations of state, vol 384. World Scientific Publishing Co Pte LTD, River Edge

    BookĀ  Google ScholarĀ 

  11. Glushko EY (2010) Pneumatic photonic crystals. Opt Express 18:3071ā€“3079

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Glushko EYa. The conception of scales echeloning for precise optical indication of pressure and temperature. 11th international conference on Laser and Fiber-Optical Networks Modeling (LFNM), 1ā€“3, 2011

    Google ScholarĀ 

  13. Rayleigh JWS (1887) On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure. Philos Mag 24:145ā€“159

    ArticleĀ  Google ScholarĀ 

  14. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059ā€“2062

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486ā€“2489

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Werber A, Zappe H (2006) Tunable, membrane-based, pneumatic micro-mirrors. J Opt A Pure Appl Opt 8:313ā€“317

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. Pervak V, Ahmad I, Trubetskov MK, Tikhonravov AV, Krausz F (2009) Double-angle multilayer mirrors with smooth dispersion characteristics. Opt Express 17:7943ā€“7951

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Tokranova N, Xu B, Castracane J (2004) Fabrication of flexible one-dimensional porous silicon photonic band-gap structures. MRS Proc 797. https://doi.org/10.1557/PROC-797-W1.3

  19. Grzybowski B, Qin D, Haag R, Whitesides GM (2000) Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing. Sensors Actuators 86:81ā€“85

    ArticleĀ  Google ScholarĀ 

  20. Landau LD, Lifshitz EM (1970) Theory of elasticity. Pergamon Press, New York, p 165

    Google ScholarĀ 

  21. Turyshev SG, Toth VT (2010) The pioneer anomaly. Living Rev Relativ 13:4ā€“171

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushko, E.Y. (2019). Based on Pneumatic Photonic Structures, High-Accuracy Measurement Procedure for the Universal Gas Constant. In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_7

Download citation

Publish with us

Policies and ethics