Skip to main content

An Alternative Approach to the Buckling Resistance Assessment of Steel, Pressurised Spherical Shells

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

  • 548 Accesses

Abstract

Provisions leading to the assessment of the buckling resistance of pressurised spherical shells are available since 2008 when they were published first time as the European Design Recommendations (EDR) (cf. Rotter and Schmidt in Buckling of Steel Shells: European Design Recommendations. ECCS, 2008 [13], Rotter and Schmidt in Buckling of Steel Shells: European Design Recommendations. ECCS, 2013 [14]). This collection of recommendations comprises rules which refer to the buckling resistance of steel shells of different shapes. In the first step of the general procedure, the calculation of two reference quantities: the elastic critical buckling reference pRcr and the plastic reference resistance pRpl is required. These quantities should be determined in the linear buckling analysis (LBA) and in the materially nonlinear analysis (MNA) respectively. Only in the case of spherical shells the existing procedure has exceptional character. It is based on the geometrically nonlinear analysis (GNA) and on the geometrically and materially nonlinear analysis (GMNA), respectively. From this reason, in this particular case there was a need to change the existing provisions. The first version of a new procedure was presented in the work of Błażejewski and Marcinowski (Buckling capacity curves for pressurized spherical shells. Taylor & Francis Group, London, pp. 401–406, 2016 [4]). All steps of the procedure leading to the assessment of buckling resistance of pressurized steel, spherical shells were presented in that work. The elaborated procedure is consistent with provisions of Eurocode EN1993-1-6 (cf. Błażejewski and Marcinowski in The worst geometrical imperfections of steel spherical shells, pp. 219–226, 2014 [3]) and with general recommendations inserted in Europeans Design Recommendations. In the present work the proposed capacity curves were compared with the existing provisions of ECCS for three different fabrication quality classes predicted. Comparisons of the author’s proposal with some experimental results obtained by other authors are presented as well. They have confirmed that the proposed procedure is less conservative than the existing one but it is still safe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Błachut, J.: Buckling of shallow spherical caps subjected to external pressure. J. Appl. Mech. Trans. ASME 72, 803–806 (2005)

    Article  Google Scholar 

  2. Błażejewski, P., Marcinowski, J.: A new approach to the buckling resistance assessment of pressurized spherical shells, SSTA. In: Proceedings of the 10th Conference, Gdańsk, Polska, pp. 179–182. Taylor & Francis Group, London (2013)

    Google Scholar 

  3. Błażejewski, P., Marcinowski, J.: Najbardziej niekorzystne imperfekcje geometryczne stalowych powłok sferycznych. The worst geometrical imperfections of steel spherical shells. Budownictwo i Architektura 13(3), 219–226 (2014). (in Polish)

    Google Scholar 

  4. Błażejewski, P., Marcinowski, J.: Buckling capacity curves for pressurized spherical shells. In: Recent Progress in Steel and Composite Structures: Proceedings of the XIII International Conference on Metal Structures—ICMS 2016, Zielona Góra, Poland, pp. 401–406. Taylor & Francis Group, London (2016)

    Google Scholar 

  5. Błażejewski, P., Marcinowski, J., Rotter, M.: Buckling of externally pressurised spherical shells. Experimental results compared with recent design recommendations. Presented in EUROSTEEL 2017, September 13–15, 2017, Copenhagen, Denmark (2017)

    Google Scholar 

  6. COSMOS/M: Finite element analysis system, version 2.5, Structural Research and Analysis Corporation, Los Angeles, California (1999)

    Google Scholar 

  7. Doerich, C., Rotter, J.M.: Generalised capacity curves for stability and plasticity: application and limitations. Thin Walled Struct. 49(9), 1132–1140 (2011)

    Article  Google Scholar 

  8. EN1993-1-1: Eurocode 3: design of steel structures, part 1.1: general rules and rules for buildings, CEN (2005)

    Google Scholar 

  9. EN1993-1-6: Eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures, CEN (2006)

    Google Scholar 

  10. Kaplan, A., Fung, Y.C.: A nonlinear theory of bending and buckling of thin elastic shallow spherical shells. U.S.N.A.C.A. Technical Note 3112 (1954)

    Google Scholar 

  11. Leibenson, L.S.: About an adoption of harmonic functions of Thompson to stability problems of spherical and cylindrical shells (in Russian). Reports of Jurovskovo University, No. 5, pp. 1–47 (1917)

    Google Scholar 

  12. Rotter, J.M.: Shell buckling and collapse analysis for structural design: the new framework of the European standard. In: Drew, H.R., Pellegrino, S. (eds.) New Approaches to Structural Mechanics, Shells and Biological Structures, pp. 355–378. Kluwer Academic Publishers, London (2002)

    Chapter  Google Scholar 

  13. Rotter, J.M., Schmidt, H. (eds.): Buckling of Steel Shells: European Design Recommendations, 5th edn. Published by ECCS (2008)

    Google Scholar 

  14. Rotter, J.M., Schmidt, H. (eds.): Buckling of Steel Shells: European Design Recommendations, 5th edn. Revised Second Impression, Published by ECCS (2013)

    Google Scholar 

  15. Schmidt, H.: The German code DIN 18800 Part 4: stability of shell-type steel structures, design philosophy and practical applications, International Colloquium on Buckling of Shell Structures on Land, in the Sea and in the Air, Villeurbanne, Lyon, France, 17–19 Sept., pp. 265–269 (1991)

    Google Scholar 

  16. Schmidt, H.: Stability of shells, CEN TC250 SC3 PT 3 (Masts, Chimneys, Pipelines) Report, August, 12 (1994)

    Google Scholar 

  17. Seaman, L.: The nature of buckling in thin spherical shells. Watertown Arsenal Laboratories, Monograph Series No 46 (1962)

    Google Scholar 

  18. Zoelly, R.: Über ein Knickungsproblem an der Kugelschale (“About a buckling problem of spherical shell”—in German). Thesis, Zürich (1915)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Marcinowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Błażejewski, P., Marcinowski, J. (2019). An Alternative Approach to the Buckling Resistance Assessment of Steel, Pressurised Spherical Shells. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_8

Download citation

Publish with us

Policies and ethics