Skip to main content

Unsymmetrical Wrinkling of Nonuniform Annular Plates and Spherical Caps Under Internal Pressure

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

Unsymmetrical buckling of inhomogeneous annular plates and spherical shallow shells subjected to internal pressure is studied. The effect of material heterogeneity, shallowness and ratio of inner to outer radii on the buckling load is examined. The unsymmetric part of the solution is sought in terms of multiples of the harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value, which leads to the appearance of waves in the circumferential direction. It is shown that if the elasticity modulus decreases away from the center of a plate, the critical pressure for unsymmetric buckling is sufficiently lower than for a plate with constant mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adachi, J.: Stresses and buckling in thin domes under internal pressure. Tech. Rep. MS68–01, U.S. Army Materials and Mechanics Research Center, Watertown (1968)

    Google Scholar 

  2. Adachi, J., Benicek, M.: Buckling of torispherical shells under internal pressure. Exp. Mech. 4(8), 217–222 (1964). https://doi.org/10.1007/BF02322954

    Article  Google Scholar 

  3. Bauer, S.M., Voronkova, E.B.: Models of shells and plates in the problems of ophthalmology. Vestnik St. Petersburg University: Mathematics 47(3), 123–139 (2014). https://doi.org/10.3103/S1063454114030029

    Article  Google Scholar 

  4. Bauer, S.M., Voronkova, E.B., Ignateva, K.: Unsymmetric equilibrium states of inhomogeneous circular plates under normal pressure. In: Pietraszkiewicz, W., Górski, J. (eds.) Shell structures, vol. 3. CRC Press, Taylor & Francis Group, Boca Raton (2014)

    Google Scholar 

  5. Bushnell, D.: Buckling of shells-pitfall for designers. AIAA J. 19(9), 1183–1226 (1981). https://doi.org/10.2514/3.60058

    Article  Google Scholar 

  6. Cheo, L.S., Reiss, E.L.: Unsymmetric wrinkling of circular plates. Q. Appl. Math. 31(1), 75–91 (1973). https://doi.org/10.1090/qam/99710

    Article  Google Scholar 

  7. Coman, C.D.: Asymmetric bifurcations in a pressurised circular thin plate under initial tension. Mech. Res. Commun. 47, 11–17 (2013). https://doi.org/10.1016/j.mechrescom.2012.09.005

    Article  Google Scholar 

  8. Coman, C.D., Bassom, A.P.: Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap. Int. J. Non Linear Mech. 81, 8–18 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.12.004

    Article  Google Scholar 

  9. Coman, C.D., Bassom, A.P.: On the nonlinear membrane approximation and edge-wrinkling. Int. J. Solids Struct. 82, 85–94 (2016). https://doi.org/10.1016/j.ijsolstr.2015.11.011

    Article  Google Scholar 

  10. Coman, C.D., Bassom, A.P.: Wrinkling structures at the rim of an initially stretched circular thin plate subjected to transverse pressure. SIAM J. Appl. Math. 78(2), 1009–1029 (2018). https://doi.org/10.1137/17M1155193

    Article  Google Scholar 

  11. Feodos’ev, V.I.: On a method of solution of the nonlinear problems of stability of deformable systems. J. Appl. Math. Mech. 27(2), 392–404 (1963). https://doi.org/10.1016/0021-8928(63)90008-X

    Article  Google Scholar 

  12. Goldstein, R., Popov, A., Kozintsev, V., Chelyubeev, D.: Non-axisymmetric edge buckling of circular plates when heated. PNRPU Mech. Bull. 1, 45–53 (2016). https://doi.org/10.15593/perm.mech/2016.2.04

    Article  Google Scholar 

  13. Huang, N.C.: Unsymmetrical buckling of shallow spherical shells. AIAA J. 1(4), 945 (1963). https://doi.org/10.2514/3.1690

    Article  Google Scholar 

  14. Morozov, N.F.: On the existence of a non-symmetric solution in the problem of large deflections of a circular plate with a symmetric load. Izv. Vyssh. Uchebn. Zaved. Mat. 2, 126–129 (1961)

    Google Scholar 

  15. Panov, D.Y., Feodosiev, V.I.: On the equilibrium and loss of stability of shallow shells in the case of large displacement. Prikladnaya matematika mekhanika. Prikladnaya Matematika Mekhanika 12, 389–406 (1948)

    Google Scholar 

  16. Piechocki, W.: On the nonlinear theory of thin elastic spherical shells: Nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading. Archiwum mechaniki stosowanej 21(1), 81–102 (1969)

    Google Scholar 

  17. Radwańska, M., Waszczyszyn, Z.: Numerical analysis of nonsymmetric postbuckling behaviour of elastic annular plates. Comput. Methods Appl. Mech. Eng. 23(3), 341–353 (1980). https://doi.org/10.1016/0045-7825(80)90014-6

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (project no. 18-01-00832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana M. Bauer .

Editor information

Editors and Affiliations

Appendix

Appendix

The differential operators that appear in (1) are defined by

$$\begin{aligned} L(x,y)= & {} x''\left( \frac{y'}{r}+\frac{\ddot{y}}{r^2}\right) +y''\left( \frac{x'}{r}+\frac{\ddot{x}}{r^2}\right) -2\left( \frac{\dot{x}}{r}\right) '\left( \frac{\dot{y}}{r}\right) ', \\ L_1^{\pm }(y)= & {} 2 y'''+(2\pm \nu )\frac{y''}{r}+ 2\frac{\left( \ddot{y}\right) '}{r^2}-\frac{y'}{r^2}-3\frac{\ddot{y}}{r^3},\\ L_2^\pm (y)= & {} y''\pm \nu \left( \frac{y'}{r}+\frac{\ddot{y}}{r^2}\right) . \end{aligned}$$

The differential operators introduced in (13) are given by

$$\begin{aligned} \mathcal {L}_1 (g_1,w_n)= & {} g_1' L^{+}_{1n}(w_{n})+g_1''L_{2n}^{+}(w_n), \\ \mathcal {L}_2 (g_2,F_n)= & {} g_2' L^{-}_{1n}(F_{n})+g_2''L_{2n}^{-}(F_n), \\ \end{aligned}$$

where

$$\begin{aligned} L_1^{\pm }(y)= & {} 2 y'''+\frac{2\pm \nu }{r}y''- \frac{2n^2+1}{r^2}\ddot{y}+\frac{3n^2}{r^3}\ddot{y},\\ L_2^\pm (y)= & {} y''\pm \nu \left( \frac{y'}{r}-\frac{n^2}{r^2}\ddot{y}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauer, S.M., Voronkova, E.B. (2019). Unsymmetrical Wrinkling of Nonuniform Annular Plates and Spherical Caps Under Internal Pressure. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_6

Download citation

Publish with us

Policies and ethics