Skip to main content

Propofol Infusion Therapy

  • Chapter
  • First Online:
Infusion Therapy

Abstract

Propofol (2, 6 diisopropyl phenol) is a mainstay of anesthetic care both as an induction agent, but also as an agent in sedation. But recent research has also suggested applications beyond these indications including uses for headaches and analgesia. Propofol causes potentiation of the GABA receptors and antagonism of the NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanna E, Garau F, Harris R. Novel properties of homomeric β1 γ-aminobutyric acid type a receptors: actions of the anesthetics propofol and pentobarbital. Mol Pharmacol. 1995;47(2):213–7.

    CAS  PubMed  Google Scholar 

  2. Barron R, Carlsen J, Duff SB, Burk C. Estimating the cost of an emergency room visit for migraine headache. J Med Econ. 2008;6(1–4):43–53.

    Google Scholar 

  3. Edlow JA, Panagos PD, Godwin SA, Thomas TL, Decker WW. American College of Emergency P. Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute headache. Ann Emerg Med. 2008;52(4):407–36.

    Article  Google Scholar 

  4. Long BJ, Koyfman A. Benign headache management in the emergency department. J Emerg Med. 2018;54(4):458–68.

    Article  Google Scholar 

  5. Nishikawa T, Scatton B. Inhibitory influence of GABA on central serotonergic transmission. Involvement of the habenulo-raphe pathways in the GABAergic inhibition of ascending cerebral serotonergic neurons. Brain Res. 1985;331(1):81–90.

    Article  CAS  Google Scholar 

  6. D'Andrea G, Granella F, Cataldini M, Verdelli F, Balbi T. Gaba and glutamate in migrane. J Headache Pain. 2001;2:S57–60.

    Article  CAS  Google Scholar 

  7. Welch KM, Chabi E, Bartosh K, Achar VS, Meyer JS. Cerebrospinal fluid gamma aminobutyric acid levels in migraine. Br Med J. 1975;3(5982):516–7.

    Article  CAS  Google Scholar 

  8. Marukawa H, Shimomura T, Takahashi K. Salivary substance P, 5-hydroxytryptamine, and gamma-aminobutyric acid levels in migraine and tension-type headache. Headache. 1996;36(2):100–4.

    Article  CAS  Google Scholar 

  9. Jayakar SS, Zhou X, Chiara DC, Dostalova Z, Savechenkov PY, Bruzik KS, et al. Multiple propofol-binding sites in a gamma-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. J Biol Chem. 2014;289(40):27456–68.

    Article  CAS  Google Scholar 

  10. Alkire MT, Haier RJ, Barker SJ, Shah NK, Wu JC, Kao YJ. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology. 1995;82(2):393–403; discussion 27A.

    Article  CAS  Google Scholar 

  11. Segovia G, Porras A, Del Arco A, Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev. 2001;122(1):1–29.

    Article  CAS  Google Scholar 

  12. Bloomstone JA. Propofol: a novel treatment for breaking migraine headache. Anesthesiology. 2007;106(2):405–6.

    Article  Google Scholar 

  13. Drummond-Lewis J, Scher C. Propofol: a new treatment strategy for refractory migraine headache. Pain Med. 2002;3(4):366–9.

    Article  Google Scholar 

  14. Soleimanpour H, Ghafouri RR, Taheraghdam A, Aghamohammadi D, Negargar S, Golzari SE, et al. Effectiveness of intravenous dexamethasone versus propofol for pain relief in the migraine headache: a prospective double blind randomized clinical trial. BMC Neurol. 2012;12:114.

    Article  CAS  Google Scholar 

  15. Krusz J, Scott V, Belanger J. Intravenous propofol: unique effectiveness in treating intractable migraine. Headache. 2001;40(3):224–30.

    Article  Google Scholar 

  16. Soleimanpour H, Taheraghdam A, Ghafouri RR, Taghizadieh A, Marjany K, Soleimanpour M. Improvement of refractory migraine headache by propofol: case series. Int J Emerg Med. 2012;5(1):19.

    Article  Google Scholar 

  17. Moshtaghion H, Heiranizadeh N, Rahimdel A, Esmaeili A, Hashemian H, Hekmatimoghaddam S. The efficacy of propofol vs. subcutaneous sumatriptan for treatment of acute migraine headaches in the emergency department: a double-blinded clinical trial. Pain Pract. 2015;15(8):701–5.

    Article  Google Scholar 

  18. Mosier J, Roper G, Hays D, Guisto J. Sedative dosing of propofol for treatment of migraine headache in the emergency department: a case series. West J Emerg Med. 2013;14(6):646–9.

    Article  Google Scholar 

  19. Sheridan D, Spiro D, Nguyen T, Koch T, Meckler G. Low-dose propofol for the abortive treatment of pediatric migraine in the emergency department. Pediatr Emerg Care. 2012;28(12):1293–6.

    Article  Google Scholar 

  20. Pescatore R. What to D.O. Emerg Med News. 2018;40(2):1.

    Article  Google Scholar 

  21. Silberstein SD, Dodick DW, Saper J, Huh B, Slavin KV, Sharan A, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia. 2012;32(16):1165–79.

    Article  Google Scholar 

  22. Giampetro D, Ruiz-Velasco V, Pruett A, Wicklund M, Knipe R. The effect of propofol on chronic headaches in patients undergoing endoscopy. Pain Res Manag. 2018;2018:6018404.

    Article  Google Scholar 

  23. Simmonds MK, Rashiq S, Sobolev IA, Dick BD, Gray DP, Stewart BJ, et al. The effect of single-dose propofol injection on pain and quality of life in chronic daily headache: a randomized, double-blind, controlled trial. Anesth Analg. 2009;109(6):1972–80.

    Article  CAS  Google Scholar 

  24. Anker-Moller E, Spangsberg N, Arendt-Nielsen L, Schultz P, Kristensen MS, Bjerring P. Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth. 1991;66(2):185–8.

    Article  CAS  Google Scholar 

  25. Orser B, Bertlik M, Wang L, MacDonald J. Inhibition by propofol (2,6-diisopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocam- pal neurones. Br J Pharmacol. 1995;116(2):1761–8.

    Article  CAS  Google Scholar 

  26. Grasshoff C, Gillessen T. Effects of propofol on N-methyl-D-aspartate receptor-mediated calcium increase in cultured rat cerebrocortical neurons. Eur J Anaesthesiol. 2005;22(6):467–70.

    Article  CAS  Google Scholar 

  27. Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.

    Article  CAS  Google Scholar 

  28. Bandschapp O, Filitz J, Ihmsen H, Berset A, Urwyler A, Koffert W, et al. Analgesic and antihyperalgesic properties of propofol in a human pain model. Anesthesiology. 2010;113:421–8.

    Article  CAS  Google Scholar 

  29. Singler B, Troster A, Manering N, Schuttler J, Koppert W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth Analg. 2007;104(6):1397–403, table of contents.

    Article  CAS  Google Scholar 

  30. Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC, et al. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann N Y Acad Sci. 2005;1042:262–71.

    Article  CAS  Google Scholar 

  31. Qiu Q, Choi SW, Wong SS, Irwin MG, Cheung CW. Effects of intra-operative maintenance of general anaesthesia with propofol on postoperative pain outcomes – a systematic review and meta-analysis. Anaesthesia. 2016;71(10):1222–33.

    Article  CAS  Google Scholar 

  32. Hans P, Deby-Dupont G, Deby C, Pieron F, Verbesselt R, Franssen C, et al. Increase in antioxidant capacity of plasma during propofol anesthesia. J Neurosurg Anesthesiol. 1997;9(3):234–6.

    Article  CAS  Google Scholar 

  33. Ito H, Watanabe Y, Isshiki A, Uchino H. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAAreceptors. Acta Anaesthesiol Scand. 1999;43(2):153–62.

    Article  CAS  Google Scholar 

  34. Hasani A, Jashari H, Gashi V, Dervishi A. In: Racz DG, editor. Propofol and postoperative pain: systematic review and meta-analysis, pain management - current issues and opinions; 2012. ISBN: 978-953-307-813-7, InTech, Available from: http://www.intechopen.com/books/painmanagementcurrentissues-and-opinions/propofol-and-postoperative-pain-systematic-review-and-meta-analysis.

  35. Cheng SS, Yeh J, Flood P. Anesthesia matters: patients anesthetized with propofol have less postoperative pain than those anesthetized with isoflurane. Anesth Analg. 2008;106(1):264–9, table of contents

    Article  Google Scholar 

  36. O'Connor TC, Abram SE. Inhibition of nociception-induced spinal sensitization by anesthetic agents. Anesthesiology. 1995;82(1):259–66.

    Article  CAS  Google Scholar 

  37. Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate depression of spinal nociceptive neurotransmission. Anesthesiology. 1992;77(6):1148–54.

    Article  CAS  Google Scholar 

  38. Sun X, Yang C, Li K, Ding S. The impact of anesthetic techniques on survival for patients with colorectal cancer: evidence based on six studies. Hepatogastroenterology. 2015;62(138):299–302.

    PubMed  Google Scholar 

  39. Woodley SJ, Kendig JJ. Substance P and NMDA receptors mediate a slow nociceptive ventral root potential in neonatal rat spinal cord. Brain Res. 1991;559(1):17–21.

    Article  CAS  Google Scholar 

  40. Nicoll RA, Alger BE. Presynaptic inhibition: transmitter and ionic mechanisms. Int Rev Neurobiol. 1979;21:217–58.

    Article  CAS  Google Scholar 

  41. Hofer CK, Zollinger A, Bu¨chi S, Klaghofer R, Serafino D, Bu¨hlmann S, et al. Patient well-being after general anaesthesia: a prospective, randomized, controlled multi-centre trial comparing intravenous and inhalation anaesthesia. Br J Anaesth. 2003;91(5):631–7.

    Article  CAS  Google Scholar 

  42. Briggs LP, Dundee JW, Bahar M, Clarke RS. Comparison of the effect of diisopropyl phenol (ICI 35, 868) and thiopentone on response to somatic pain. Br J Anaesth. 1982;54(3):307–11.

    Article  CAS  Google Scholar 

  43. Ogurlu M, Sari S, Kucuk M, Bakis M, Ugur B, Eshraghi YE, et al. Comparison of the effect of propofol and sevoflurane anaesthesia on acute and chronic postoperative pain after hysterectomy. Anaesth Intensive Care. 2014;42(3):365–70.

    Article  CAS  Google Scholar 

  44. Ozkose Z, Ercan B, Unal Y, Yardim S, Kaymaz M, Dogulu F, et al. Inhalation versus total intravenous anesthesia for lumbar disc herniation: comparison of hemodynamic effects, recovery characteristics, and cost. J Neurosurg Anesthesiol. 2001;13(4):296–302.

    Article  CAS  Google Scholar 

  45. Mukherjee K, Seavell C, Rawlings E, Weiss A. A comparison of total intravenous with balanced anaesthesia for middle ear surgery: effects on postoperative nausea and vomiting, pain, and conditions of surgery. Anaesthesia. 2003;58(2):176–80.

    Article  CAS  Google Scholar 

  46. Flood P, Sonner J, Gong D, Coates K. Isoflurane hyperalgesia is modulated by nicotinic inhibition. Anesthesiology. 2002;97:192–8.

    Article  CAS  Google Scholar 

  47. Cho AR, Kwon JY, Kim KH, Lee HJ, Kim HK, Kim ES, et al. The effects of anesthetics on chronic pain after breast cancer surgery. Anesth Analg. 2013;116(3):685–93.

    Article  CAS  Google Scholar 

  48. Shin SW, Cho AR, Lee HJ, Kim HJ, Byeon GJ, Yoon JW, et al. Maintenance anaesthetics during remifentanil-based anaesthesia might affect postoperative pain control after breast cancer surgery. Br J Anaesth. 2010;105(5):661–7.

    Article  CAS  Google Scholar 

  49. Kaye AD, Chung K, Vadivelu N, Cantemir C, Urman RD, Manchikanti L. Opioid induced hyperalgesia altered with propofol infusion. Pain Physician. 2014;17(2):E225–8.

    PubMed  Google Scholar 

  50. Song JG, Shin JW, Lee EH, Choi DK, Bang JY, Chin JH, et al. Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg. 2012;41(5):1078–82.

    Article  Google Scholar 

  51. Yoo YC, Bai SJ, Lee KY, Shin S, Choi EK, Lee JW. Total intravenous anesthesia with propofol reduces postoperative nausea and vomiting in patients undergoing robot-assisted laparoscopic radical prostatectomy: a prospective randomized trial. Yonsei Med J. 2012;53(6):1197–202.

    Article  CAS  Google Scholar 

  52. Ortiz J, Chang LC, Tolpin DA, Minard CG, Scott BG, Rivers JM. Randomized, controlled trial comparing the effects of anesthesia with propofol, isoflurane, desflurane and sevoflurane on pain after laparoscopic cholecystectomy. Braz J Anesthesiol. 2014;64(3):145–51.

    Article  Google Scholar 

  53. Pokkinen SM, Yli-Hankala A, Kalliomaki ML. The effects of propofol vs. sevoflurane on post-operative pain and need of opioid. Acta Anaesthesiol Scand. 2014;58(8):980–5.

    Article  CAS  Google Scholar 

  54. Zhang Y, Eger EI, Dutton RC, Sonner JM. Inhaled anesthetics have hyperalgesic effects at 0.1 minimum alveolar anesthetic concentration. Anesth Analg. 2000;91(2):462–6.

    CAS  PubMed  Google Scholar 

  55. Akkurt BC, Temiz M, Inanoglu K, Aslan A, Turhanoglu S, Asfuroglu Z, et al. Comparison of recovery characteristics, postoperative nausea and vomiting, and gastrointestinal motility with total intravenous anesthesia with propofol versus inhalation anesthesia with desflurane for laparoscopic cholecystectomy: a randomized controlled study. Curr Ther Res Clin Exp. 2009;70(2):94–103.

    Article  CAS  Google Scholar 

  56. Li M, Mei W, Wang P, Yu Y, Qian W, Zhang ZG, et al. Propofol reduces early post-operative pain after gynecological laparoscopy. Acta Anaesthesiol Scand. 2012;56(3):368–75.

    Article  CAS  Google Scholar 

  57. Wang Q, Cao J, Zeng Y, Dai T. GABAA receptor partially mediated propofol-induced hyperalgesia at superspinal level and analgesia at spinal cord level in rats. Acta Pharmacol Sin. 2004;25(12):1619–25.

    CAS  PubMed  Google Scholar 

  58. Anwar MM, Abdel-Rahman MS. Effect of propofol on perception of pain in mice: mechanisms of action. Comp Biochem Physiol A Mol Integr Physiol. 1998;120(2):249–53.

    Article  CAS  Google Scholar 

  59. Barash PG. Clinical anesthesia. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  60. Schneider U, Rada D, Rollnik JD, Passie T, Emrich HM. Propofol dependency after treatment of tension headache. Addict Biol. 2001;6(3):263–5.

    Article  Google Scholar 

  61. Wilson C, Canning P, Caravati EM. The abuse potential of propofol. Clin Toxicol (Phila). 2010;48(3):165–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grandhi, R.K., Abd-Elsayed, A. (2019). Propofol Infusion Therapy. In: Abd-Elsayed, A. (eds) Infusion Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-17478-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17478-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17477-4

  • Online ISBN: 978-3-030-17478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics