Skip to main content

Methods for Personalised Delivery Rate Computation for IV Administered Anesthetic Propofol

  • Chapter
  • First Online:
Automated Reasoning for Systems Biology and Medicine

Part of the book series: Computational Biology ((COBO,volume 30))

Abstract

The goal of target-controlled delivery of intravenous (IV) anesthetics is the achievement and maintenance of a suitable depth of hypnosis (DOH) in a fast and safe manner, where DOH is associated with a certain effect site (i.e. brain) drug concentration. Nowadays, the delivery of anesthetic drugs is performed by target-controlled infusion (TCI)  pumps adjusting the delivery rate using an algorithm based on pharmacokinetic (PK) models having no feedback. However, the inaccuracy of concentration prediction using this PK model for certain individuals can be up to 100%. In this chapter, we show that the precision of anesthesia delivery can definitely be improved by realising a feedback loop with sensors able to provide measurements of the anesthetic concentration in body fluids in real time. We present two possible approaches for building the control feedback loop using plasma concentration measurements: one representing the classic method in pharmacokinetics based on Bayesian inference and another one being an example of classic method in control theory based on Kalman filter. The first one performs real-time re-estimation of PK model parameters with each new measurement, while the latter one estimates the offset values for drug concentration correction. The adjusted concentration values are further used to compute the personalised delivery rate using the classic TCI algorithm. To validate the algorithms’ robustness, we simulate measurements covering the maximum space of possible values using inter- and intra-patient variability of the statistical Eleveld’s (Eleveld, Proost, Cortinez, Absalom, Struys, Anesth Analg 118(6):1221–1237, 2014, [8]) PK model. This allows one to disturb the system to its extreme before testing it on patients. We provide the robustness analysis of these algorithms with respect to realistic measurement periods and delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas H, Jiang Z, Jang K, Liang J, Dixit S, Mangharam R (2016) Computer aided clinical trials for implantable cardiac devices. In: SES 2016: Symposium F-2: modeling, design and safety analysis in physiological closed-loop systems

    Google Scholar 

  2. Bailey JM, Haddad WM (2005) Drug dosing control in clinical pharmacology. IEEE Control Syst 25(2):35–51

    Article  Google Scholar 

  3. Beal S, Sheiner L, Boeckmann A, Bauer R (1989–2009) NONMEM user’s guides

    Google Scholar 

  4. Burchum JR, Rosenthal LD, Jones BO, Neumiller JJ, Lehne RA (2016) Lehne’s pharmacology for nursing care

    Google Scholar 

  5. d Silva MM, Mendona T, Wigren T (2010) Online nonlinear identification of the effect of drugs in anaesthesia using a minimal parameterization and BIS measurements. In: Proceedings of the 2010 American control conference, pp 4379–4384

    Google Scholar 

  6. De Smet T, Struys MMRF, Greenwald S, Mortier EP, Shafer SL (2007) Estimation of optimal modeling weights for a Bayesian-based closed-loop system for propofol administration using the bispectral index as a controlled variable: a simulation study. Anesth Analg 105(6):1629–1638

    Article  Google Scholar 

  7. Dumont GA, Ansermino JM (2013) Closed-loop control of anesthesia: a primer for anesthesiologists. Anesth Analg 117(5):1130–1138

    Article  Google Scholar 

  8. Eleveld D, Proost J, Cortinez L, Absalom A, Struys M (2014) A general purpose pharmacokinetic model for propofol. Anesth Analg 118(6):1221–1237

    Article  Google Scholar 

  9. Gentilini A, Frei CW, Glattfedler AH, Morari M, Sieber TJ, Wymann R, Schnider TW, Zbinden AM (2001) Multitasked closed-loop control in anesthesia. IEEE Eng Med Biol Mag 20(1):39–53

    Article  Google Scholar 

  10. Kivlehan F, Garay F, Guo J, Chaum E, Lindner E (2012) Toward feedback-controlled anesthesia: voltammetric measurement of propofol (2,6-diisopropylphenol) in serum-like electrolyte solutions. Anal Chim Acta 84(18):7670–7676

    Article  Google Scholar 

  11. Kotsovolis G, Komninos G (2009) Awareness during anesthesia: how sure can we be at the patient is sleeping indeed? Hippokratia 2(13):83–89

    Google Scholar 

  12. Langmaier J, Garay F, Kivlehan F, Chaum E, Lindner E (2011) Electrochemical quantification of 2,6-diisopropylphenol (propofol). Anal Chim Acta 704(1–2):63–67

    Article  Google Scholar 

  13. Liu N, Chazot T, Hamada S, Landais A, Boichut N, Dussaussoy C, Trillat B, Beydon L, Samain E, Sessler DI, Fischler M (2011) Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg 12(3):546–557

    Article  Google Scholar 

  14. Mandel JE, Sarraf E (2012) The variability of response to propofol is reduced when a clinical observation is incorporated in the control: a simulation study. Anesth Analg 114(6):1221–1229

    Article  Google Scholar 

  15. Marsh B, White M, Morton N, Kenny GNC (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67(1):41–48

    Article  Google Scholar 

  16. Orchestra Base Primea TCI system. https://www.fresenius-kabi.de/orchestrabaseprimea.htm

  17. Orser BA, Mazer CD, Baker AJ (2008) Awareness during anaesthesia. Can Med Assoc J 2(178):185–188

    Article  Google Scholar 

  18. Rampil IR (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89(4):980–1002

    Article  Google Scholar 

  19. Schnider T, Minto C, Gambus PL, Andresen C, Goodale D, Shafer S, Youngs E (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88(5):1170–1182

    Article  Google Scholar 

  20. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ (1999) The influence of age on propofol pharmacodynamics. Anesthesiology 90(6):1502–1516

    Article  Google Scholar 

  21. Shafer SL, Gregg KM (1992) Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 20(2):147–169

    Article  Google Scholar 

  22. Silva MM (2014) Nonlinear modeling and feedback control of drug delivery in anesthesia. Doctoral thesis

    Google Scholar 

  23. Silva MM, Medvedev A, Wigren T, Mendona T (2015) Modeling the effect of intravenous anesthetics: a path toward individualization. IEEE Design Test 32(5):17–26

    Article  Google Scholar 

  24. Simalatsar A, Guidi M, Buclin T (2016) Cascaded PID controller for anaesthesia delivery. In: 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 533–536

    Google Scholar 

  25. Stradolini F, Kilic T, Taurino I, De Micheli G, Boero G (2018) Cleaning strategy for carbon-based electrodes: long-term propofol monitoring in human serum. Sens Actuators B B(269):304–313

    Article  Google Scholar 

  26. Stradolini F, Tuoheti A, Ros PM, Demarchi D, Carrara S (2017) Raspberry pi based system for portable and simultaneous monitoring of anesthetics and therapeutic compounds. In: 2017 New generation of CAS (NGCAS), pp 101–104

    Google Scholar 

  27. Zhusubaliyev ZT, Medvedev A, Silva MM (2013) Bifurcation analysis for PID-controller tuning based on a minimal neuromuscular blockade model in closed-loop anesthesia. In: 52nd IEEE conference on decision and control, pp 115–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Simalatsar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simalatsar, A., Guidi, M., Roduit, P., Buclin, T. (2019). Methods for Personalised Delivery Rate Computation for IV Administered Anesthetic Propofol. In: Liò, P., Zuliani, P. (eds) Automated Reasoning for Systems Biology and Medicine. Computational Biology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-17297-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17297-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17296-1

  • Online ISBN: 978-3-030-17297-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics