Skip to main content

Non-visual Biological Mechanism

  • Chapter
  • First Online:
Interior Lighting

Abstract

Daily (circadian) bodily rhythms, a fundamental property of human life, are synchronised by the natural 24-h dark-light rhythm. This entrainment by light is one of the non-visual biological effects of light. In particular, the rhythms of the hormones cortisol, supplying energy to the body, and melatonin, facilitating sleep, are important.

A relatively new type of photoreceptor discovered in 2002, the photosensitive retinal ganglion cell pRGC, connects with the suprachiasmatic nucleus SCN, a structure within the brain that acts as a master biological clock. The SCN, in its turn, has pathways to the pineal gland, where melatonin is produced, and to the adrenal cortex responsible for the production of cortisol.

Light may, apart from effects on circadian rhythms, also have direct, acute photobiological effects that influence alertness and performance.

The spectral sensitivity of the pRGCs, given by their photopigment melanopsin, is different from that of rods and the three types of cones. Its sensitivity peaks in the blue part of the wavelength range. Rods and cones have a neural connection with ganglion cells, and consequently their signals interplay with the signal obtained from the pRGC itself. Much of this neural wiring is as yet unknown. Primarily because of this, it is impossible to define a single spectral sensitivity function or action spectrum for all non-visual effects of light. The correlated colour temperature can be used only as a rough indication for the characterisation of the spectrum of lamps for non-visual biological use. The spectrally weighted irradiances for the five human photopigments (α-opic irradiances) are at this moment the best characterisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschoff J (1954) Zeitgeber der tierischen Tagesperiodik. Naturwissenschaften 41:49–56

    Article  ADS  Google Scholar 

  • Aschoff J (1965) Circadian rhythms in man—a self-sustained oscillator with an inherent frequency underlies human 24-hour periodicity. Science 148:1427–1432

    Article  ADS  Google Scholar 

  • Aschoff J (1981) Handbook of behavioral neurobiology, Biological rhythms. Plenum Press, New York

    Google Scholar 

  • Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL (2016) Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 353:587–590

    Article  ADS  Google Scholar 

  • Bailes HJ, Lucas RJ (2013) Human melanopsin forms a pigment maximally sensitive to blue light (lambdamax {approx} 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades. Proc R Soc B Biol Sci 280(1759):20122987

    Article  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schible U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 289:2344–2347

    Article  ADS  Google Scholar 

  • Bargiello TA, Jackson FR, Young MW (1984) Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312:752–754

    Article  ADS  Google Scholar 

  • Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320

    Article  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  ADS  Google Scholar 

  • Boivin DB, Czeisler CA (1998) Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light. NeuroReport 9:779–782

    Article  Google Scholar 

  • Brainard GC, Hanifin JP (2004) The effects of light on human health and behavior: relevance to architectural lighting. In: CIE x027:2004 Proceedings of CIE symposium ’04 light and health: non-visual effects, pp 2–16

    Google Scholar 

  • Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21(16):6405–6412

    Article  Google Scholar 

  • Broszio K, Knoop M, Niedling M, Völker S (2017) Effective radiant flux for non-image forming effects—is the illuminance and the melanopic irradiance at the eye really the right measure? In: Proceedings Lux Europe, Ljubljana, pp 18–20

    Google Scholar 

  • Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer JM, Albrecht U, Schibler U (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338

    Article  Google Scholar 

  • Cajochen C (2007) Alerting effects of light. Sleep Med Rev 11:453–464

    Article  Google Scholar 

  • Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms 3:71–91

    Article  Google Scholar 

  • Chang AM, Scheer FAJL, Czeisler CA (2011) The human circadian system adapts to prior photic history. J Physiol 589(5):1095–1102

    Article  Google Scholar 

  • Chellappa SL, Gordijn MCM, Cajochen C (2011) Can light make us bright? Effects of light on cognition sleep. In: Kerkhof G, van Dongen HPA (eds) Progress in brain research. Elsevier, Amsterdam, p 190

    Google Scholar 

  • Chen SK, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95

    Article  Google Scholar 

  • Chovnick A (1960) Proceedings of Cold Spring Harbor symposium on quantitative biology. In: Biological clocks 25:117–514

    Google Scholar 

  • CIE (2004) International Commission on Illumination CIE Publication 158:2004, Ocular lighting effects on human physiology and behaviour. Vienna

    Google Scholar 

  • CIE (2015a) International Commission on Illumination CIE Technical Note 003:2015, Report on the first international workshop on circadian and neurophysiological photometry, 2013. Vienna

    Google Scholar 

  • CIE (2015b) Irradiance toolbox. http://files.cie.co.at/784_TN003_Toolbox.xls

  • CIE (2016) International Commission on Illumination CIE DIS 017:2016 (term 17-29-030). CIE Draft international standard, ILV: International lighting vocabulary. Vienna

    Google Scholar 

  • CIE (2018) International Commission on Illumination CIE International Standard CIE 026:2018. CIE system for metrology of optical radiation for ipRGC-influenced responses to light. Vienna

    Google Scholar 

  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181

    Article  Google Scholar 

  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754

    Article  ADS  Google Scholar 

  • De Candolle A (1832) La Physiologie végégetal. Béchet Jeune, Paris

    Google Scholar 

  • De Mairan JJO (1729) Observation botanique. Hist. de l’Acad. Royal Sciences, Paris, p 1

    Google Scholar 

  • Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22

    Article  Google Scholar 

  • Do MTH, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287

    Article  ADS  Google Scholar 

  • Duffy JF, Cain SW, Chang AM, Phillips AJK, Münch MY, Gronfier C, Wyatt JK, Dijk DJ, Wright KP, Czeisler CA (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci USA 108(Suppl 3):15602–15608

    Article  ADS  Google Scholar 

  • Dunlap JC, Loros JJ, Aronson BD, Merrow M, Crosthwaite S, Bell-Pedersen D, Johnson K, Lindgren K, Garceau NY (1995) The genetic basis of the circadian clock identification of frq and FRQ as clock components. In: Circadian clocks and their adjustment, Ciba Foundation Symposium 183. Wiley, Chichester

    Google Scholar 

  • Eastman CI, Burgess HJ (2009) How to travel the world without jet lag. Sleep Med Clin 4(2):241–255

    Article  Google Scholar 

  • Emery P, So WV, Kaneko M, Hall JC, Rosbach M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679

    Article  Google Scholar 

  • Figueiro MG, Rea MS (2010) The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol 2010:1–9

    Article  Google Scholar 

  • Figueiro MG, Rea MS, Bullough JD (2006) Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neurosci Lett 406:293–297

    Article  Google Scholar 

  • Foster R, Kreitzman L (2004) Rhythms of life. The biological clocks that control the daily lives of every living thing. Profile Books Ltd., London

    Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169(1):39–50

    Article  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  ADS  Google Scholar 

  • Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47(7):946–954

    Article  Google Scholar 

  • Giménez M, Schlangen L, Lang D, Beersma D, Novotny P, Plischke H, Wulff K, Linek M, Cajochen C, Löffler J, Lasauskaite R, Bhusal P, Halonen L (2016) D3.7 Report on metric to quantify biological light exposure doses. Accelerate SSL Innovation for Europe. SSL-erate Consortium

    Google Scholar 

  • Glickman G, Hanifin JP, Rollag MD, Wang H, Cooper H, Brainard GC (2003) Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans. J Biol Rhythms 18:71–79

    Article  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4(12):1165

    Article  Google Scholar 

  • Hankins MW, Lucas RJ (2002) The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 12(3):191–198

    Article  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  ADS  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):75–81

    Article  ADS  Google Scholar 

  • Hébert M, Martin SK, Lee C, Eastman CI (2002) The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res 33(4):198–203

    Article  Google Scholar 

  • Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O’Neil JS (2017) Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 9(415):eaal2774

    Article  Google Scholar 

  • Jasser SA, Hanifin JP, Rollag MD, Brainard GC (2006) Dim light adaptation attenuates acute melatonin suppression in humans. J Biol Rhythms 21(5):394–404

    Article  Google Scholar 

  • Jones BE (2003) Arousal systems. Front Biosci 8:S438–S451

    Article  Google Scholar 

  • Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309:109–118

    Article  Google Scholar 

  • Kaur G, Phillips C, Wong K, Saini B (2013) Timing is important in medication administration: a timely review of chronotherapy research. Int J Clin Pharm 35(3):344–358

    Article  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, Oxford

    Google Scholar 

  • Klerman EB, Rimmer DW, Dijk D-J, Kronauer RE, Rizzo JF III, Czeisler CA (1998) Nonphotic entrainment of the human circadian pacemaker. Am J Physiol 274:R991–R996

    Google Scholar 

  • Knoop M (2018) Opinion: studies on non-image forming effects—lighting cold cases? Lighting Res Technol 50:496

    Article  Google Scholar 

  • Kobav MB, Bizjak G (2012) LED spectra and melatonin suppression action function. Light Eng 20(3):15–22

    Google Scholar 

  • Kozaki T, Kubokawa A, Taketomi R, Hatae K (2016) Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light. Neurosci Lett 616:1–4

    Article  Google Scholar 

  • Kumbalasiri T, Provencio I (2005) Melanopsin and other novel mammalian opsins. Exp Eye Res 81:368–375

    Article  Google Scholar 

  • Lasko TA, Kripke DF, Elliot JA (1999) Melatonin suppression by illumination of upper and lower visual fields. J Biol Rhythms 14:122–125

    Article  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80(10):2587

    Article  Google Scholar 

  • Lockley SW, Evans EE, Scheer FAJL, Brainard GC, Czeisler CA et al (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29:161–168

    Google Scholar 

  • Lowden A, Äkerstedt T, Wibom R (2004) Suppression of sleepiness and melatonin by bright light exposure during breaks in night work. J Sleep Res 13:37–43

    Article  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247

    Article  ADS  Google Scholar 

  • Lucas RJ, Peirson SN, Berson SN, Brown TM, Cooper HM, Czeisler CA, Figueiro MG, Gamlin PD, Lockley SW, O’Hagan JB, Price LLA, Provencio I, Skene DJ, Brainard GC (2014) Measuring and using light in the melanopsin age. Trends Neurosci 37(1):1–9

    Article  Google Scholar 

  • McIntyre IM, Norman TR, Burrows GD, Armstrong SM (1989a) Human melatonin suppression by light is intensity dependent. J Pineal Res 6(2):149–156

    Article  Google Scholar 

  • McIntyre IM, Norman TR, Burrows GD, Armstrong SM (1989b) Quantal melatonin suppression by exposure to low intensity light in man. Life Sci 45(4):327–332

    Article  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  Google Scholar 

  • Moore RY, Heller A, Wurtman RJ, Axelrod J (1967) Visual pathway mediating pineal response to environmental light. Science 155(3759):220–223

    Article  ADS  Google Scholar 

  • Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352(3):351–366

    Article  Google Scholar 

  • Morin LP (1994) The circadian visual system. Brain Res Rev 19:102–127

    Article  Google Scholar 

  • Mure LS, Rieux C, Hattar S, Cooper HM (2007) Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms 5:411–424

    Article  Google Scholar 

  • Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR (2003) Melanopsin forms a functional short wavelength photopigment. Biochemistry 42:12734–12738

    Article  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice. Science 301(5632):525–527

    Article  ADS  Google Scholar 

  • Pauers MJ, Kuchenbecker JA, Neitz M, Neitz J (2012) Changes in the colour of light cue circadian activity. Anim Behav 83:1143–1151

    Article  Google Scholar 

  • Peirson S, Foster RG (2006) Melanopsin: another way of signalling light. Neuron 49(3):331–339

    Article  Google Scholar 

  • Phipps-Nelson J, Redman JR, Dijk DJ, Rajaratnam SM (2003) Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor, vigilance performance. Sleep 26:695–700

    Article  Google Scholar 

  • Piazena H, Franke L, Thomsen B, Kamenzky I, Uebelhack R, Völker S (2014) Melatoninsuppression mit Weiβlicht-LEDs—erste Ergebnisse. In: Proceedings of the 8th symposium Licht und Gesundheit, Berlin, pp 39–52

    Google Scholar 

  • Pittendrigh CS, Bruce VG (1957) An oscillator model for biological clocks. In: Rudnick D (ed) Rhythmic and synthetic processes in growth. Princeton University Press, Princeton, NJ, pp 239–268

    Google Scholar 

  • Provencio I, Rodriguez IR, Jiang GS, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    Article  Google Scholar 

  • Rautkylä E, Puolakka M, Halonen L (2012) Alerting effects of daytime light exposure—a proposed link between light exposure and brain mechanisms. Lighting Res Technol 44:238–252

    Article  Google Scholar 

  • Rea MS (2002) Light—much more then vision. In: Light and human health: EPRI/LRO 5th international lighting research symposium, Palo Alto, pp 1–15

    Google Scholar 

  • Rea MS, Bullough JD, Figueiro MG, Bierman A (2004) Spectral opponency in human circadian phototransduction: implications for lighting practice. In: Proceedings of CIE symposium lighting & health, Vienna, pp 111–115

    Google Scholar 

  • Rea MS, Figueiro MG, Bullough JD, Bierman A (2005) A model of phototransduction by the human circadian system. Brain Res Rev 50:213–228

    Article  Google Scholar 

  • Rea MS, Figueiro MG, Bierman A, Bullough JD (2010) Circadian light. J Circ Rhythms 8(2):1–10

    Google Scholar 

  • Rea MS, Figueiro MG, Bierman A, Hamner MS (2012) Modelling the spectral sensitivity of the human circadian system. Lighting Res Technol 44:386–396

    Article  Google Scholar 

  • Refinetti R (2015) Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice. J Physiol Sci 65:359–366

    Article  Google Scholar 

  • Revell VL, Molina TA, Eastman CI (2012) Human phase response curve to intermittent blue light using a commercially available device. J Physiol 590(19):4859–4868

    Article  Google Scholar 

  • Richter C (1967) Psychopathology of periodic behavior in animals and man. In: Zubin J, Hunt HF (eds) Comparative psychopathology, vol 205. Grune & Stratton, New York, p 227

    Google Scholar 

  • Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18(1):80–90

    Article  Google Scholar 

  • Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M (2004) A marker for the end of adolescence. Curr Biol 14:R1038-R

    Article  Google Scholar 

  • Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11:429–438

    Article  Google Scholar 

  • Roenneberg T, Juda M, Kramer A, Merrow M, Vetter C, Allebrandt KV (2013) Light and the human circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks. Springer, Berlin

    Google Scholar 

  • Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA, Johnston SH, Allen R, Kelly KA, Souetre E, Schultz PM, Starz KE (1990) Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep 13(4):354–361

    Google Scholar 

  • Rüger M, Gordijn MCM, Beersma DGM, De Vries B, Daan S (2005) Nasal versus temporal illumination of the human retina: effects on core body temperature, melatonin and circadian phase. J Biol Rhythms 14:122–125

    Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  ADS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythm in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    Article  ADS  Google Scholar 

  • Takahashi Y, Katsuura T, Shimomura Y, Iwanago K (2011) Prediction model of light-induced melatonin suppression. J Light Vis Environ 35(2):123–135

    Article  ADS  Google Scholar 

  • Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus–pineal pathway. J Comp Neurol 406:171–182

    Article  Google Scholar 

  • Terman M, Lewy AJ, Dijk DJ, Boulos Z, Eastman CI, Campbell SS (1995) Light treatment for sleep disorders: consensus report. IV. Sleep phase and duration disturbances. J Biol Rhythms 10(2):135–147

    Article  Google Scholar 

  • Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535(1):261–267

    Article  Google Scholar 

  • Thorn L, Hucklebridge F, Esgate A, Evans P, Clow A (2004) The effect of dawn simulation on the cortisol response to awakening in healthy participants. Psychoneuroendocrinology 29:925–930

    Article  Google Scholar 

  • Van Bommel WJM (2010) Incandescent replacement lamps and health. LED Prof Rev 19:32–35

    Google Scholar 

  • Van Diepen HC, Ramkisoensing A, Peirson SN, Foster RG, Meijer JH (2013) Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors. FASEB J 27:4204–4212

    Article  Google Scholar 

  • Van Diepen HC, Foster RG, Meijer JH (2015) A colourful clock. PLoS Biol 1002160:1–5

    Google Scholar 

  • Van Gelder RN, Mawad K (2007) Illuminating the mysteries of melanopsin and circadian photoreception. J Biol Rhythms 5:394–395

    Google Scholar 

  • Vanderwalle G, Maquet P, Dijk DJ (2009) Light as a modulator of cognitive brain function. Trends Cogn Sci 13(10):429–438

    Article  Google Scholar 

  • Vandewalle G, Balteau E, Phillips C, Degueldre C, Moreau V, Sterpenich V, Albouy G, Darsaud A, Dessailles M, Dang-Vu TT, Peigneux P, Luxen A, Dijk DJ, Maquet P (2006) Daytime light exposure dynamically enhances brain responses. Curr Biol 16:1616–1621

    Article  Google Scholar 

  • Visser EK, Beersma DGM, Daan S (1999) Melatonin suppression by light in humans is maximal when the nasal part of the retina is illuminated. J Biol Rhythms 14:116–121

    Article  Google Scholar 

  • Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, Bechtold DA, Webb AR, Lucas RJ, Brown TM (2015) Colour as signal for entraining the mammalian circadian clock. PLoS Biol 1002127:1–20

    Google Scholar 

  • Winget CM, Hughes L, LaDou J (1978) Physiological effects of rotational work shifting: a review. J Occup Med 20(3):204–210

    Article  Google Scholar 

  • Woelders T, Beersma DGM, Gordijn MCM, Hut RA, Wams EJ (2017) Daily light exposure patterns reveal phase and period of the human circadian clock. J Biol Rhythms 32(3):274–286

    Article  Google Scholar 

  • Xu W, Van Bommel WJM (2011) Inferior verso superior: inferior retinal light exposure is more effective in pupil contraction in humans. Light Eng 19(2):14–18

    Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  ADS  Google Scholar 

  • Zeitzer JM, Friedman L, Yesavage JA (2011) Effectiveness of evening phototherapy for insomnia is reduced by bright daytime light exposure. Sleep Med 12(8):805–807

    Article  Google Scholar 

  • Zulley J, Knab B (2000) Unsere Innere Uhr. Herder, Freiburg im Breisgau

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Bommel, W. (2019). Non-visual Biological Mechanism. In: Interior Lighting. Springer, Cham. https://doi.org/10.1007/978-3-030-17195-7_5

Download citation

Publish with us

Policies and ethics