Skip to main content

Development of Nano-Bioformulations of Nutrients for Sustainable Agriculture

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanobiotechnology is being utilized for crop improvement programs around the world. It is being felt that the solution for increasing the yield of crops by efficient utilization of fertilizers lies in nanotechnology. Although the green revolution was a boon to the world economy by increasing the crop productivity, the exhaustive usage of chemical fertilizers, herbicides, pesticides, and insecticides resulted in the loss of biodiversity and the development of resistance by the pathogens causing depletion of soil and variable crop losses over time. The delivery of agrochemicals by nanoparticles increases the efficiency for precision farming. The conventional/nonconventional fertilizers can be nano-encapsulated which results in their slow/precise release for aiding in sustainable agriculture. In the current article, the potential of nanotechnology for mitigating problems associated with conventional agriculture will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    Article  CAS  PubMed  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. https://doi.org/10.1038/nnano.2009.242

    Article  CAS  PubMed  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in sensing and pollution degradation in agriculture. Environ Chem Lett J 7:191–204

    Article  CAS  Google Scholar 

  • Bharde A, Rautray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey, pp 415–473

    Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora Crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chen J (2006) The combined use of chemical and organic fertilizers for crop growth and soil fertility. Int. workshop on sustained management of the soil rhizosphere system for efficient crop production and fertilizer use. 16–20 October, Thailand

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Choi CW, Yoo SA, Oh IH, Park SH (1998) Characterization of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp. Biotechnol Lett 20:643–646

    Article  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Bourven I, Guibaud G, van Hullebusch ED, Panico A, Pirozzi F, Esposito G (2015) Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment. Appl Microb Biotechnol 99(23):9883–9905

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges. FAQ, Rome

    Google Scholar 

  • Fayaz M, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):1–5

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Godfray CHJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, Pretty J, Robinson S, Toulmin C, Whiteley R (2010) The future of the global food system. Philos Trans R Soc B 365:2769–2777. http://www.geohumus.com/us/products.html. (Accessed 20 Oct 2016)

    Article  Google Scholar 

  • Jia LR, Xia J, Zhou N, Chen WY (2008) Preservation of fruits by hydrolyzed collagen/sodium alginate nanoparticles latex. Food Mach 1:46–50

    Google Scholar 

  • Knell M (2010) Nanotechnology and the sixth technological revolution. In: Cozzens SE, Wetmore JM (eds) Nanotechnology and the challenges of equity, equality and development. Springer, Dordrecht, pp 127–143. https://doi.org/10.1007/978-90-481-9615-9_8

    Chapter  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637

    Article  CAS  PubMed  Google Scholar 

  • McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture. Precis Agric 6:7–23

    Article  Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirkby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  PubMed  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS One:10. https://doi.org/10.1371/journal.pone.0126275

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirzaei A, Vazan S, Naseri R (2010) Response of yield components of safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azosprilium and different nitrogen levels under dry land condition. World Appl Sci J 11(10):1287–1291

    Google Scholar 

  • Mishra S, Singh A, Keswani C, Singh HB (2014) Nanotechnology: exploring potential application in agriculture and its opportunities and constraints. Biotech Today 4:9–14. https://doi.org/10.5958/2322-0996.2014.00011.8

    Article  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Moharrer S, Mohammad B, Gharamohammad RA, Yargol M (2012) Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J Sci Technol 5:2443–24447

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A Physicochem Eng Asp 380:156–161

    Article  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using pleurotus Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Bios 4:623–629

    Google Scholar 

  • Ojaghloo F, Farahvash F, Hassanzadeh A, Pouryusef M (2007) Effect of inoculation with azotobacter and phosphate biofertilizers on yield of safflower (Carthamus tinctorius L.). J Agric Sci, Islamic Azad University, Tabriz Branch 3:25–30

    Google Scholar 

  • Ombodi A, Saigusa M (2000) Broadcast application versus band application of polyolefin coated fertilizer on green peppers grown on anisole. J Plant Nutr 23:1485–1493

    Article  CAS  Google Scholar 

  • Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S and Varma A (eds.), Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants Springer International Publishing Switzerland, pp. 247–260

    Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham. (978-3-319-42989-2)

    Book  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd., Singapore. (ISBN 978-3-319-68423-9)

    Book  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018a) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Prasad R, Gill SS, Tuteja N (2018b) Crop Improvement Through Microbial Biotechnology. Elsevier

    Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Review article; Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotech 1(03):041–044

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 12:1584–1594

    Article  Google Scholar 

  • Research and Markets (2015) Global nanotechnology market outlook 2015–2020. Available at: http://www.prnewswire.com/news-releases/globalnanotechnology-market-outlook-2015-2020%2D%2D-industry-will-grow-to-reachus-758-billion-507155671.html

  • Sabourin V, Ayande A (2015) Commercial opportunities and market demand for nanotechnologies in agribusiness sector. J Technol Manag Innov 10:40–51

    Article  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017a) Agricultural nanotechnology: Concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds.). Nanotechnology, Springer Nature Singapore Pte Ltd, pp. 1–17

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds.). Nanotechnology, Springer Nature Singapore Pte Ltd, pp. 73–97

    Google Scholar 

  • Sadowski Z, Maliszewska GB, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Pol 26:419–425

    CAS  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  CAS  Google Scholar 

  • Salantur A, Ozturk A, Akten S, Sahin F, Donmez F (2005) Effect of inoculation with nonindigenous and indigenous rhizobacteria of Erzurum (Turkey) origin on growth and yield of spring barley. Plant Soil 275:147–156

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165:221–234

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Chattopadhyay D, Patra S, Deo SS, Sinha S, Ghosh M, Mukherjee A, Acharya K (2011) Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomater Biostruct 6:563–573

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar KB, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:9035012

    Google Scholar 

  • Singh P, Balaji R (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2:600–605

    CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for largescale production of AgNPs). Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash, S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16–22

    Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  PubMed  Google Scholar 

  • Yasari E, Patwardhan AM (2007) Effects of (Azotobacter and Azospirillum) inoculants and chemical fertilizers on growth and productivity of canola (Brassica napus L.).Asian J. Plant Sci 6(1):77–82

    Google Scholar 

  • Yosefi K, Galavi M, Ramrodi M, Mousavi SR (2011) Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with micronutrient foliar application on growth, yield and yield components of maize (Single Cross 704). Aust J Crop Sci 5(2):175–180

    CAS  Google Scholar 

  • Zahir A, Arshad ZM, Frankenberger WF (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirzadah, T.B., Malik, B., Maqbool, T., Rehman, R.U. (2019). Development of Nano-Bioformulations of Nutrients for Sustainable Agriculture. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_16

Download citation

Publish with us

Policies and ethics