Skip to main content

Green Synthesis Approaches of Nanoagroparticles

  • Chapter
  • First Online:
Nanobiotechnology in Bioformulations

Abstract

The systematic use of agrochemicals has generated numerous damages to biodiversity, resulting in the death of insect pollinators and intoxication of domestic animals and human populations. In this context, ecologically friendly nanocomposites appear as a promising alternative to circumvent this scenario, maintaining agricultural production and eliminating pests. Due to their size, nanoagroparticles have unique properties that are more effective than their major counterparts in combating pests and disease vectors. Moreover, these nanoparticles (NPs) can be used as carriers of herbicides already used in agriculture, such as atrazine, and also as biosensors to detect the presence of compounds and organisms (e.g., pesticides, toxins, pathogens) that can affect the quality and the productivity of agricultural crops. However, in order to ensure the efficiency and the absence of environmental impact of these compounds, special attention should be paid to nanoformulation, synthesis methods, and the degradation and sorption processes, allowing the production of NPs with the desired shape, size, stability, and action mechanism. Unfortunately, conventional methods use toxic compounds during synthesis, which pose a risk to the environment and human health. This scenario has generated concern on the part of the scientific community, which is represented by the growing number of scientific articles addressing aspects related with nanoagroparticle ecological friendly synthesis approaches, also known as green synthesis methods. These methodologies use organisms such as microbes, plants, and fungi as nanobiofactories, which makes possible the production of nanopesticides and nanoherbicides without the use of toxic compounds. Considering this scenario, this chapter proposes to address the various methods of nanoagroparticle green synthesis, emphasizing the advances obtained in last years and the future perspectives regarding the use of these NPs in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla-Al-Mamun M, Kusumoto Y, Muruganandham M (2009) Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Mater Lett 63:2007–2009

    Article  CAS  Google Scholar 

  • Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 47:217–225

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier, San Diego, p 952

    Google Scholar 

  • Aguilar-Mendez MA, Martin-Martínez ES, Ortega-Arroyo L, Portillo GC, Sanchez-Espindola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Alcantara EN, Wyse DL (1988) Glyphosate as harvest aid for corn (Zea mays). Weed Technol 2:410–413

    Article  CAS  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M et al (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SM, Yousef NMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater 2015:1–10

    CAS  Google Scholar 

  • Almenar E, Auras R, Rubino M, Harte B (2007) A new technique to prevent the main post harvest diseases in berries during storage: inclusion complexes β-cyclodextrin-hexanal. Int J Food Microbiol 118:164–172

    Article  CAS  PubMed  Google Scholar 

  • Almenar E, Catala R, Hernandez-Muñoz P, Gavara R (2009) Optimization of an active package for wild strawberries based on the release of 2-nonanone. Food Sci Technol 42:587–593

    CAS  Google Scholar 

  • Anand R, Kulothungan S (2014) Silver mediated bacterial nanoparticles as seed dressing against crown rot pathogen of groundnut. Arch Appl Sci Res 6:109–113

    CAS  Google Scholar 

  • Anjali CH, Sudheer KS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Kim JH (2015) Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 10:1977–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azania CAM, Azania AAPM, Schiaveto AR, Pizzo IV, Marcari M, Panin IEL, Oliveira C (2010) Eficácia de herbicidas no controle de espécies de corda-de-viola em cana-de-açucar. STAB 29:41–45

    Google Scholar 

  • Baker S, Rakshith D, Kavitha KS et al (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3(3):111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa. Spectrochim Acta A Mol Biomol Spectrosc 150:691–695

    Article  CAS  Google Scholar 

  • Baker S, Volova T, Prudnikova SV et al (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  PubMed  Google Scholar 

  • Balaguer MP, Fajardo P, Gartner H et al (2014) Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. Int J Food Microbiol 173:62–71

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Maggi F, Pavela R et al (2018) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Pollut Res 25:10184–10206

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M et al (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–3019

    Chapter  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016a) Nano-biofungicides: Emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing Switzerland, pp 307–319

    Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016b) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: An eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanoscience, Article ID 4679410, 7 pages, 2016. https://doi.org/10.1155/2016/4679410

    Article  CAS  Google Scholar 

  • Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200, DOI:10.1515/jppr-2017-0026

    Article  CAS  Google Scholar 

  • Bhor G, Maskare S, Hinge S, Singh L, Nalwade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepis exaltata L. and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol Innov 02(07):2014

    Google Scholar 

  • Boro RC, Kaushal J, Nangia Y, Wangoo N, Bhasinc A, Suri CR (2011) Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst 136:2125–2130

    Article  CAS  Google Scholar 

  • Campos EVR, De Oliveira JL, Da Silva CMG et al (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep 5:1–14

    Article  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Pol 9:685–692

    Article  Google Scholar 

  • Cătălin BP, Gudovan D, Gudovan I (2017) Nanopesticides: a new paradigm in crop protection. In: Grumezescu AM (ed) New pesticides and soil sensors. Elsevier, London, pp 129–192

    Chapter  Google Scholar 

  • Chaw JL, Basri M, Omar D et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102:19–29

    Article  CAS  Google Scholar 

  • Chen G, Liu B (2016) Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and ß-cyclodextrin. Food Hydrocoll 55:100–107

    Article  CAS  Google Scholar 

  • Clemente Z, Grillo R, Jonsson M et al (2014) Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917

    Article  CAS  PubMed  Google Scholar 

  • da Rocha Neto AC, Maraschin M, Di Piero RM (2015) Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int J Food Microbiol 215:64–70

    Article  PubMed  CAS  Google Scholar 

  • da Rocha Neto AC, Luiz C, Maraschin M, Di Piero RM (2016) Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int J Food Microbiol 221:54–60

    Article  PubMed  CAS  Google Scholar 

  • da Rocha Neto AC, de Oliveira da Rocha AB, Maraschin M et al (2018) Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocoll 77:509–523

    Article  CAS  Google Scholar 

  • Darolt JC, da Rocha Neto AC, Di Piero RM (2016) Effects of the protective, curative, and eradicative applications of chitosan against Penicillium expansum in apples. Braz J Microbiol 47:1014–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Blancas V, Medina DI, Padilla-Ortega E et al (2016) Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules 21:1–12

    Article  CAS  Google Scholar 

  • Dich J, Zahm SH, Hanberg A, Adami HO (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  PubMed  Google Scholar 

  • Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J PharmTech Res 9:121–144

    CAS  Google Scholar 

  • Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Eddleston M, Bateman DN (2012) Pesticides. Medicine (Baltimore) 40:147–150

    Article  Google Scholar 

  • Eddleston M, Karalliedde L, Buckley N et al (2002) Pesticide poisoning in the developing world - a minimum pesticides list. Lancet 360:1163–1167

    Article  PubMed  Google Scholar 

  • El-Rahman AFA, Mohammad TGM (2013) Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J Appl Sci Res 9(10):6437–6440

    Google Scholar 

  • Fathi M, Martin A, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39:18–39

    Article  CAS  Google Scholar 

  • Felipini RB, Boneti JI, Katsurayama Y et al (2016) Apple scab control and activation of plant defence responses using potassium phosphite and chitosan. Eur J Plant Pathol 145:929–939

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2006) International code of conduct on the distribution and use of pesticides. Adopted by the hundred and twenty-third session of the FAO Council in November 2002

    Google Scholar 

  • Frankova A, Smid J, Bernardos A et al (2016) The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control 68:62–68

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, Lima RD, Oehlke K, Greiner R, Leonardo F, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide, an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  PubMed  Google Scholar 

  • Hafez EE, Hassan HS, Elkady M, Salama E (2014) Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int J Sci Technol Res 3:318–324

    Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: Grumezescu AM (ed) New pesticides and soil sensors. Elsevier Inc., Amsterdam, pp 193–225

    Chapter  Google Scholar 

  • Hazrati H, Saharkhiz MJ, Niakousari M, Moein M (2017) Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf 142:423–430

    Article  CAS  PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Hess FD (2000) Light-dependent herbicides: an overview. Weed Sci 48:160–170

    Article  CAS  Google Scholar 

  • Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats? In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, Washington, D.C., pp 73–90

    Chapter  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques MT, Oliveira JL, Campos EVR et al (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253

    Article  CAS  PubMed  Google Scholar 

  • Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting, and controlled release. In: New pesticides and soil sensors. Elsevier, London, pp 81–127

    Chapter  Google Scholar 

  • Jeffery EM, Shaw DR, Barrentine WL (1998) Herbicide combinations for preharvest weed desiccation in early maturing soybean (Glycine max). Weed Technol 12:157–165

    Article  Google Scholar 

  • Jia X, Sheng WB, Li W et al (2014) Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl Mater Interfaces 6:19552–19558

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joshi A (2014) Utility of Carbon Nanotubes for Enhancement of Crop (Wheat) in Agriculture. Nanoscitech Volume: Tata McGraw Hill, USA :554–555

    Google Scholar 

  • Joshi A, Kaur S, Dharamvir K et al (2018) Multi-walled carbon nanotubes applied through seed-priming treatment influence multiple mechanisms to stimulate growth and yield of bread wheat. J Sci Food Agric 98:3148–3160

    CAS  PubMed  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kah M, Weniger AK, Hofmann T (2016) Impacts of (Nano)formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ Sci Technol 50:10960–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M, Singh KR, Gogos A, Bucheli T (2018a) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13(8):677–684

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Walch H, Hofmann T (2018b) Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin. Environ Sci Nano 5:882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalishwaralal K, Banumathi E, Ram KPS, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kang T, Wang F, Lu L, Zhang Y, Liu T (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensors Actuators B Chem 145:104–109

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Karande P, Trasatti JP, Chandra D (2015) Novel approaches for the delivery of biologics to the central nervous system. In: Novel approaches and strategies for biologics, vaccines and cancer therapies. Elsevier, New York, pp 59–88

    Chapter  Google Scholar 

  • Kasprowicz MJ, Kozio M, Gorczyca A (2010) The effect of sil- ver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Katz H, Mishael YG (2013) Reduced herbicide leaching by in situ adsorption of herbicide-micelle formulations to soils. J Agric Food Chem 62:50–57

    Article  PubMed  CAS  Google Scholar 

  • Kavitha KS, Baker S, Rakshith D, Kavitha HU, Yashwantha RHC, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2:66–76

    Google Scholar 

  • Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol-cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431

    Article  CAS  Google Scholar 

  • Khadri H, Alzohairy M, Janardhan A, Kumar AP, Narasimha G (2013) Green synthesis of silver nanoparticles with high fungicidal activity from olive seed extract. Adv Nanopart 2:241–246

    Article  CAS  Google Scholar 

  • Kheiri A, Moosawi Jorf SA, Mallihipour A et al (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticide industry sales and usage. 2000 and 2001 market estimates available at: http://wwwepagov/pesticides/pestsales/01pestsales/market_estimates2001pdf. Accessed 25 Oct 2012

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K et al (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kookana RS, Boxall ABA, Reeves PT et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Krug HF (2014) Nanosafety research – are we on the right track? Angew Chem Int Ed 3:12304–12319

    Google Scholar 

  • Kumar S, Chauhan N, Gopal M et al (2015) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637

    Article  CAS  PubMed  Google Scholar 

  • Laware S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl 3:874–881

    CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ et al (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu W, Yao J, Cai M et al (2014) Synthesis of a novel nanopesticide and its potential toxic effect on soil microbial activity. J Nanopart Res 16:2677

    Article  CAS  Google Scholar 

  • Loha KM, Shakil NA, Kumar J et al (2011) Release kinetics of β-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health B Pestic Food Contam Agric Wastes 46:201–206

    Article  CAS  Google Scholar 

  • Luiz C, Rocha Neto AC, Di Piero RM (2015) Resistance to xanthomonas gardneri in tomato leaves induced by polysaccharides from plant or microbial origin. J Plant Pathol 97:119–127

    Google Scholar 

  • Luiz C, Rocha Neto AC, Franco PO, Robson Marcelo DP (2017) Nanoemulsions of essential oils and aloe polysaccharides: antimicrobial activity and resistance inducer potential against Xanthomonas fragariae. Trop Plant Pathol 42:370–381

    Article  Google Scholar 

  • Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM et al (2010) Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym 82:305–315

    Article  CAS  Google Scholar 

  • Medda S, Hajra A, Dey U, Bose P, Mondal NK (2014) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 5:875

    Article  CAS  Google Scholar 

  • Mew EJ, Padmanathan P, Konradsen F et al (2017) The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord 219:93–104

    Article  PubMed  Google Scholar 

  • Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682

    Article  CAS  PubMed  Google Scholar 

  • Narayanasamy P (2011) Detection of fungal pathogens in plants. In: Microbial plant-pathogens detection and disease diagnosis. Springer, Dordrecht, p 291

    Google Scholar 

  • Nenaah GE, Ibrahim SIA, Al-Assiuty BA (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J Stored Prod Res 61:9–16

    Article  Google Scholar 

  • Ngo QB, Dao TH, Nguyen HC, Tran XT, Nguten TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7

    Article  CAS  Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by Y-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233

    Article  CAS  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on Rosa “Noare”. Hortscience 48:189–192

    Article  CAS  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:829894

    Article  CAS  Google Scholar 

  • Pereira AES, Grillo R, Mello NFS et al (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  PubMed  Google Scholar 

  • Pereira EI, Giroto AS, Bortolin A et al (2015) Perspectives in nanocomposites for the slow and controlled release of agrochemicals: fertilizers and pesticides Elaine. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 241–265

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

    Google Scholar 

  • Qin Y, Ji X, Jing J et al (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A Physicochem Eng Asp 372:172–176

    Article  CAS  Google Scholar 

  • Queiroz GMP, Silva MR, Bianco RJF, Pinheiro A, Kaufmann V (2011) Transporte de glifosato pelo escoamento superficial e por lixiviação em um solo agrícola. Quim Nova 34:190–195

    Article  CAS  Google Scholar 

  • Ramy SY, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A (2017) Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol 61:132–140

    Article  CAS  Google Scholar 

  • Rodrigues BN, Almeida FS (2011) Guia de herbicidas. Grafmarke, Londrina, p 639

    Google Scholar 

  • Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12:453–469

    Article  CAS  Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 73–97

    Chapter  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural nanotechnology: Concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 1–77

    Google Scholar 

  • Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    Article  CAS  PubMed  Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626

    Article  Google Scholar 

  • Shao X, Cao B, Xu F et al (2015) Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol Technol 99:37–43

    Article  CAS  Google Scholar 

  • Shaoqin L, Lang Y, Xiuli Y, Zhaozhu Z, Zhiyong T (2008) Recent Advances in Nanosensors for Organophosphate Pesticide Detection. Adv Powder Technol 19 (5): 419–441

    Article  CAS  Google Scholar 

  • Shatkin JA, Kim B (2015) Cellulose nanomaterials: life cycle risk assessment and environmental health and safety roadmap. Environ Sci Nano 2:497–499

    Article  CAS  Google Scholar 

  • Singh Y, Meher JG, Raval K et al (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252:28–49

    Article  CAS  PubMed  Google Scholar 

  • Solans C, Solé I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Stloukal P, Kucharczyk P, Sedlarik V et al (2012) Low molecular weight poly(lactic acid) microparticles for controlled release of the herbicide metazachlor: preparation, morphology, and release kinetics. J Agric Food Chem 60:4111–4119

    Article  CAS  PubMed  Google Scholar 

  • Suresh KRS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res Int 20:2593–2602

    Article  CAS  Google Scholar 

  • Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM et al (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agric Technol Service Assoc:1–18

    Google Scholar 

  • United Nation (2017). Available at: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

  • Villaverde JJ, Sevilla-Morán B, López-Goti C et al (2017) An overview of nanopesticides in the framework of European legislation. In: New pesticides and soil sensors. Elsevier Inc., pp 227–271. Academic Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Vyas SP, Kannan ME, Jain S, Mishra V, Singh P (2004) Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 269:37–49

    Article  CAS  PubMed  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2:40–44

    Google Scholar 

  • Wen L-X, Li Z-Z, Zou H-K et al (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci 61:583–590

    Article  CAS  PubMed  Google Scholar 

  • Wen P, Zhu D-H, Wu H et al (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376

    Article  CAS  Google Scholar 

  • World Health Organization (2017) Cancer. Available at: http://www.who.int/cancer/en/

  • Wu M, Lin G, Chen D et al (2002) Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem Mater 14:1974–1980

    Article  CAS  Google Scholar 

  • Xiang Y, Han J, Zhang G et al (2018) Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide. ACS Sustain Chem Eng 6:3649–3658

    Article  CAS  Google Scholar 

  • Xu J, Fan QJ, Yin ZQ et al (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169:399–403

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604

    CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2014) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61:319–326

    Article  CAS  Google Scholar 

  • Zaki AM, Zaki AH, Farghali AA, Abdel-Rahim EF (2017) Sodium titanate -Bacillus as a new nanopesticide for cotton leaf-worm. J Pure Appl Microbiol 11:725–732

    Article  CAS  Google Scholar 

  • Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal Chem 54:1–10

    Article  CAS  Google Scholar 

  • Zhang X, Liu Z, Shen W, Gurunathan S (2017) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Article  CAS  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter C, Yu Middelberg APJ (2014) Nanoparticle vaccine. Vaccine 32:327–337

    Article  PubMed  Google Scholar 

  • Zhao H, Lan Y, Nan C et al (2016) Preparation of 8% fenpropathrin·cyflumetofen nano-emulsion and its performance. Sci Agric Sin 49:2700–2710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souza, L.R.R., da Rocha Neto, A.C., da Silva, C.R., Franchi, L.P., de Souza, T.A.J. (2019). Green Synthesis Approaches of Nanoagroparticles. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_15

Download citation

Publish with us

Policies and ethics