Skip to main content

Experimental Study of Defects and Mechanical Properties During Under-Water Friction Stir Welding of Al6061-6063 Alloys

  • Conference paper
  • First Online:
  • 864 Accesses

Abstract

In this study, welding samples were attributed with reduced welding defects such as a tunnel, onion ring, exit pinhole, surface flash and micro-voids with improved mechanical strength through underwater friction stir welding. Two dissimilar aluminum alloys with different mechanical properties were successfully joined by using direct application of groundwater during friction stir welding. Taguchi method was used to design the experimental runs and identify optimal process parameters setting. After the welding process, the samples were cut into the desired size as required for tensile test and hardness test. Scanning electron microscopy was used to understand grain behavior at weld nugget zone after the tensile test. Fewer defects as well as improved mechanical strength with minimum spindle speed i.e.1000 rpm and welding speed 16 & 20 mm/min were observed. Minimum spindle speed leads to reduce power consumption. Fine equiaxed grains were also observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Omar Salih S, Ou H, Sun W, McCartney DG (2015) A review of friction stir welding of aluminium matrix composites. Mater Des 86:61–71

    Article  Google Scholar 

  2. Shah PH, Badheka V (2016) An experimental investigation of temperature distribution and joint properties of Al 7075 T651 friction stir welded aluminium alloys. Procedia Technol 23:543–550

    Article  Google Scholar 

  3. Yoo J, Yoon J, Min K, Lee H (2015) Effect of friction stir welding process parameters on mechanical properties and macro structure of Al-Li alloy. Procedia Manuf 2:325–330

    Article  Google Scholar 

  4. Tan S, Zheng F, Chen J, Han J, Wu Y, Peng L (2017) Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy. J Magnesium Alloys 5(1):56–63

    Article  Google Scholar 

  5. Sharma HK, Bhatt K, Shah K, Joshi U (2016) Experimental analysis of friction stir welding of dissimilar alloys AA6061 and Mg AZ31 using circular butt joint geometry. Procedia Technol 23:566–572

    Article  Google Scholar 

  6. Ugender S, Kumar A, Reddy AS (2014) Experimental investigation of tool geometry on mechanical properties of friction stir welding of AA 2014 aluminium alloy. Procedia Mater Sci 5:824–831

    Article  Google Scholar 

  7. Lee H, Yoon J, Yoo J, No K (2016) Friction stir welding process of aluminum-lithium alloy 2195. Procedia Eng 149:62–66

    Article  Google Scholar 

  8. Shen Z, Chen Y, Haghshenas M, Gerlich AP (2015) Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Int J Eng Sci Technol 18:270–277

    Article  Google Scholar 

  9. Casalino G, Campanelli S, Mortello M (2014) Influence of shoulder geometry and coating of the tool on the friction stir welding of aluminium alloy plates. Procedia Eng 69:1541–1548

    Article  Google Scholar 

  10. Liu XC, Sun YF, Fujii H (2017) Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Mater Des 129:151–163

    Article  Google Scholar 

  11. Joints S, Sabari S, Malarvizhi S, Balasubramanian V (2016) Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir Welded AA2519-T87 aluminium alloy joints. J Mater Process Technol 237:286–300

    Article  Google Scholar 

  12. Sabari S, Malarvizhi S, Balasubramanian V, Reddy GM (2016) Experimental and numerical investigation on under-water friction stir welding of armour Grade AA2519-T87 aluminium alloy. Def Technol 12(2016):324–333

    Article  Google Scholar 

  13. Rathod P, Aravindan S, Rao PV (2016) Performance evaluation of novel micro-textured tools in improving the machinability of aluminum alloy (Al 6063). Procedia Technol 23:296–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhabale, R.B., Jatti, V.S. (2020). Experimental Study of Defects and Mechanical Properties During Under-Water Friction Stir Welding of Al6061-6063 Alloys. In: Pawar, P., Ronge, B., Balasubramaniam, R., Vibhute, A., Apte, S. (eds) Techno-Societal 2018 . Springer, Cham. https://doi.org/10.1007/978-3-030-16962-6_62

Download citation

Publish with us

Policies and ethics