Skip to main content

Antineurodegenerative and Antidiabetic Activity of Lichens

  • Chapter
  • First Online:
Lichen Secondary Metabolites

Abstract

Neurodegenerative diseases are phenomena that occur in the central nervous system through the hallmarks associating the loss of neuronal structure and function. These diseases affect many of our body’s activities, such as balance, movement, talking, breathing, and heart function. These disorders are very common and their frequency increases with age, in mid-to-late adult life. Except neurodegeneration, a very common disease is diabetes mellitus. Diabetes mellitus is a chronic disease caused by inherited and/or acquired deficiency in the production of insulin by the pancreas or by the ineffectiveness of the insulin produced. Such a deficiency results in increased concentrations of glucose in the blood, which in turn damage many of the body’s systems. Since the past few decades, diabetes has become a global health problem. Apart from conventional therapy, several studies have shown that some natural products have beneficial effects in neurological and diabetic patients. Various natural products emerged as interesting molecules with antineurodegenerative and antidiabetic potential. However, little is known in relation to lichens as potential therapeutics in these disorders. Therefore, this chapter focuses on the antineurodegenerative and antidiabetic potential of lichens that have received considerable attention in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abusufyan S, Ibrahim M, Mohib K (2018) Comparative in vitro antidiabetic and antioxidant activity of various extracts of Ficus species. Pharm J 10:349–354

    CAS  Google Scholar 

  • Ataie A, Shadifar M, Ataee R (2016) Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci 7:81–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barquilla García A (2017) Brief update on diabetes for general practitioners. Rev Esp Sanid Penit 19:57–65

    PubMed  Google Scholar 

  • Baynes HW (2015) Classification, pathophysiology, diagnosis and management of diabetes mellitus. J Diabetes Metab 6:541

    Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2004) Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 87:83–87

    CAS  Google Scholar 

  • Berger J, Wagner JA (2002) Physiological and therapeutic roles of peroxisome proliferatoractivated receptors. Diabetes Technol Ther 4:163–174

    Article  CAS  Google Scholar 

  • Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W et al (2018) The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med 18:103

    Article  Google Scholar 

  • Choudhary MI, Ali M, Wahab AT et al (2011) New antiglycation and enzyme inhibitors from Parmotrema cooperi. Sci China Chem 54:1926–1931

    Article  CAS  Google Scholar 

  • Crous-Bou M, Minguillón C, Gramunt N et al (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther 9:71

    Article  Google Scholar 

  • Cui Y, Yim JH, Lee DS et al (2012) New diterpene furanoids from the Antarctic lichen Huea sp. Bioorg Med Chem Lett 22:7393–7396

    Article  CAS  Google Scholar 

  • de Paz GA, Raggio J, Gómez-Serranillos MP et al (2010) HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J Pharm Biomed Anal 53:165–171

    Article  Google Scholar 

  • Dsouza D, Lakshmidevi N (2015) Models to study in vitro antidiabetic activity of plants: a review. Int J Pharm Biol Sci 6:732–741

    Google Scholar 

  • Ellman GL, Courtney DK, Andreas V et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Emsen B, Aslan A, Togar B et al (2016) In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm Biol 54:1748–1762

    Article  CAS  Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  Google Scholar 

  • Fernandez-Moriano C, Divakar PK, Crespo A et al (2015) Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: identification of active compounds. Phytomedicine 22:847–855

    Article  CAS  Google Scholar 

  • Fernández-Moriano C, Divakar PK, Crespo A et al (2017) In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation. Toxicol Appl Pharmacol 316:83–94

    Article  Google Scholar 

  • Griess P (1879) Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. Chem Ber 12:426–428

    Article  Google Scholar 

  • Gupta RC, Chang D, Nammi S et al (2017) Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 9:59

    Article  Google Scholar 

  • Haj FG, Markova B, Klaman LD et al (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278:739–744

    Article  CAS  Google Scholar 

  • Hengameh P, Shivanna R, Rajkumar HG (2016) In-vitro inhibitory activity of some lichen extracts against FC;-amylase enzyme. Eur J Biomed Pharm Sci 3:315–318

    CAS  Google Scholar 

  • Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5:101–108

    PubMed  PubMed Central  Google Scholar 

  • Honda NK, Gonçalves K, Brandão LZG et al (2016) Screening of lichen extracts using tyrosinase inhibition and toxicity against Artemia salina. Orbital Electron J Chem 8:181–188

    CAS  Google Scholar 

  • Ikeda T, Yamada M (2010) Risk factors for Alzheimer’s disease. Brain Nerve 62:679–690

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

    Article  Google Scholar 

  • Karunaratne V, Thadhani VM, Khan SN et al (2014) Potent FC;-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka. J Natl Sci Found Sri Lanka 42:95–98

    Article  CAS  Google Scholar 

  • Khan MF, Rawat AK, Khatoon S et al (2018) In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integr Med Res 7:176–183

    Article  Google Scholar 

  • Kim GH, Kim JE, Rhie SJ et al (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340

    Article  Google Scholar 

  • Kim M, Ho A, Lee JH (2017) Autophagy and human neurodegenerative diseases—a fly’s perspective. Int J Mol Sci 18:1596

    Article  Google Scholar 

  • Kremens D, Hauser RA, Dorsey ER (2014) An update on Parkinson’s disease: improving patient outcomes. Am J Med 127:S3

    Article  Google Scholar 

  • Liu Z, Zhou T, Ziegler AC et al (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017:2525967

    PubMed  PubMed Central  Google Scholar 

  • Luo H, Li C, Kim JC et al (2013) Biruloquinone, an acetylcholinesterase inhibitor produced by lichen-forming fungus Cladonia macilenta. J Microbiol Biotechnol 23:161–166

    Article  CAS  Google Scholar 

  • Parimelazhagan T (2016) Anti-diabetic activity. In: Parimelazhagan T (ed) Pharmacological assays of plant-based natural products. Springer, Cham, pp 139–143

    Chapter  Google Scholar 

  • Paudel B, Bhattarai HD, Koh HY et al (2011) Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine 184:1285–1290

    Article  Google Scholar 

  • Paulson HL (2009) The spinocerebellar ataxias. J Neuroophthalmol 29:227–237

    Article  Google Scholar 

  • Pejin B, Tommonaro G, Iodice C et al (2013) A new depsidone of Lobaria pulmonaria with acetylcholinesterase inhibition activity. J Enzyme Inhib Med Chem 28:876–878

    Article  CAS  Google Scholar 

  • Pratt AJ, Getzoff ED, Perry JJ (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2:1–14

    PubMed Central  Google Scholar 

  • Reddy RG, Veeraval L, Maitra S et al (2016) Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine 23:1527–1534

    Article  CAS  Google Scholar 

  • Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40

    Article  Google Scholar 

  • Saito K, Lee S, Shiuchi T et al (2011) An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes. Anal Biochem 412:9–17

    Article  CAS  Google Scholar 

  • Seo C, Choi YH, Ahn JS et al (2009a) PTP1B inhibitory effects of tridepside and related metabolites isolated from the Antarctic lichen Umbilicaria antarctica. J Enzyme Inhib Med Chem 24:1133–1137

    Article  CAS  Google Scholar 

  • Seo C, Sohn JH, Ahn JS et al (2009b) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803

    Article  CAS  Google Scholar 

  • Seo C, Yim JH, Lee HK et al (2011) PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica. Mycology 2:18–23

    Article  CAS  Google Scholar 

  • Shivanna R, Hengameh P, Rajkumar HG (2015) Screening of lichen extracts for in-vitro antidiabetic activity using alpha amylase inhibitory assay. Int J Biol Pharm Res 6:364–367

    Google Scholar 

  • Thadhani VM (2013) Semisynthesis and bioactivities of lichen metabolites. Scholars’ Press, Saarbrücken

    Google Scholar 

  • Thadhani VM, Karunaratne V (2017) Potential of lichen compounds as antidiabetic agents with antioxidative properties: a review. Oxid Med Cell Longev 2017:2079697

    Article  Google Scholar 

  • Thadhani VM, Naaz Q, Choudhag MI et al (2014) Enzyme inhibitory and immunomodulatory activities of the depsidone lobaric acid extracted from the lichen Heterodermia sp. J Natl Sci Found Sri Lanka 42:193–196

    Article  CAS  Google Scholar 

  • Valadbeigi T (2016) Chemical composition and enzymes inhibitory, brine shrimp larvae toxicity, antimicrobial and antioxidant activities of Caloplaca biatorina. Zahedan J Res Med Sci 18:e4267

    Google Scholar 

  • Valadbeigi T, Shaddel M (2016) Amylase inhibitory activity of some macro lichens in Mazandaran province, Iran. Physiol Pharmacol 20:215–219

    Google Scholar 

  • Valley MP, Karassina N, Aoyama N et al (2016) A bioluminescent assay for measuring glucose uptake. Anal Biochem 505:43–50

    Article  CAS  Google Scholar 

  • Verma N, Behera BC, Sonone A et al (2008) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr J Biochem Res 2:225–231

    Google Scholar 

  • Verma N, Behera BC, Om Sharma B (2012) Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe J Biol Chem 40:7–21

    Google Scholar 

  • Villhauer EB, Brinkman JA, Naderi GB et al (2003) 1-[(3-hydroxy-1 adamantyl) amino acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 46:2774–2789

    Article  CAS  Google Scholar 

  • Vinayaka KS, Karthik S, Nandini KC et al (2013) Amylase inhibitory activity of some macrolichens of western ghats, Karnataka, India. Indian J Novel Drug Deliv 5:225–228

    Google Scholar 

  • Yamamoto N, Ueda-Wakagi M, Sato T et al (2015) Measurement of glucose uptake in cultured cells. Curr Protoc Pharmacol 71:12.14.1–12.14.26

    Article  Google Scholar 

  • Zlatanović I, Stanković M, Stankov-Jovanović V et al (2017) Biological activities of Umbilicaria crustulosa (Ach.) Frey acetone extract. J Serb Chem Soc 82:141–150

    Article  Google Scholar 

  • Zrnzević I, Stanković M, Stankov Jovanovic V et al (2017) Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity. EXCLI J 16:679–687

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosanić, M., Ranković, B. (2019). Antineurodegenerative and Antidiabetic Activity of Lichens. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-030-16814-8_8

Download citation

Publish with us

Policies and ethics