Skip to main content

Ionic Conductivity, Polymer Electrolyte, Membranes, Electrochemical Stability, Separators

  • Chapter
  • First Online:
Book cover Lithium-Ion Batteries
  • 110k Accesses

Abstract

The most commonly used separators in Li-ion batteries are the polyolefin membranes due to their satisfactory electrochemical stability, useful thickness and advantageous mechanical strength.

This book was machine-generated

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Main Document References

  1. Xu Q, Wei C, Fan L et al (2017) Cellulose 24:1889. https://doi.org/10.1007/s10570-017-1225-x

  2. Xiao, W., Wang, J., Wang, H et al (2016) J Solid State Electrochem 20:2847. https://doi.org/10.1007/s10008-016-3268-6

  3. Li W, Li X, Yuan A et al (2016) Ionics 22:2143. https://doi.org/10.1007/s11581-016-1752-8

  4. Sheng J, Tong S, He Z et al (2017) Cellulose 24:4103. https://doi.org/10.1007/s10570-017-1421-8

  5. Pan R, Wang Z, Sun R et al (2017) Cellulose 24:2903. https://doi.org/10.1007/s10570-017-1312-z

  6. Wang H, Wang N, Liu T et al (2016) Ionics 22:731. https://doi.org/10.1007/s11581-016-1698-x

  7. Feng L, Wang Q, Ai C, Sun J (2017) The effect of multicomponent electrolyte additive on LiFePO4-based lithium ion batteries. In: Harada K, Matsuyama K, Himoto K, Nakamura Y, Wakatsuki K (eds) Fire science and technology 2015. Springer, Singapore. https://doi.org/10.1007/978-981-10-0376-9_16

  8. Arya A, Sharma AL (2017) Ionics 23:497. https://doi.org/10.1007/s11581-016-1908-6

  9. Faridi M, Naji L, Kazemifard S et al (2018) Chem Pap 72:2289. https://doi.org/10.1007/s11696-018-0458-y

  10. Arya A, Sadiq M, Sharma AL (2018) Ionics 24:2295. https://doi.org/10.1007/s11581-017-2364-7

  11. Ren N, Song Y, Tao C et al (2018) J Solid State Electrochem 22:1109. https://doi.org/10.1007/s10008-017-3855-1

  12. Song S, Wang J, Tang J et al (2017) Ionics 23:3365. https://doi.org/10.1007/s11581-017-2130-x

  13. Hema M, Tamilselvi P, Hirankumar G (2017) Ionics 23:2707. https://doi.org/10.1007/s11581-016-1925-5

  14. Liu B, Huang Y, Cao H et al (2018) J Solid State Electrochem 22:807. https://doi.org/10.1007/s10008-017-3814-x

  15. Singh SK, Gupta H, Balo L et al (2018) Ionics 24:1895. https://doi.org/10.1007/s11581-018-2458-x

  16. Li L, Yang X, Li J et al (2018) Ionics 24:735. https://doi.org/10.1007/s11581-017-2254-z

  17. Mahant YP, Kondawar SB, Nandanwar DV et al (2018) Mater Renew Sustain Energy 7:5. https://doi.org/10.1007/s40243-018-0115-y

  18. Selvamani V, Suryanarayanan V, Velayutham D et al (2016) J Solid State Electrochem 20:2283. https://doi.org/10.1007/s10008-016-3248-x

  19. Han G, Yang S, Liu J, Huang Y (2018) The investigation of humics as a binder for LiFePO4 cathode in lithium ion battery. In: Li B et al (eds) Characterization of minerals, metals, and materials 2018. TMS 2018, The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-319-72484-3_4

Other Bibliographic References

  1. Lee J, Lee CL, Park K, Kim ID (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217

    Article  CAS  Google Scholar 

  2. Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membrane Sci 456:57–65

    Article  CAS  Google Scholar 

  3. Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626

    Article  CAS  Google Scholar 

  4. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545

    Article  CAS  Google Scholar 

  5. Kim JH, Kim JH, Choi ES, Yu HK, Kim JH, Wu Q, Chun SJ, Lee SY, Lee SY (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources 242:533–540

    Article  CAS  Google Scholar 

  6. Xu Q, Kong Q, Liu Z, Zhang J, Wang X, Liu R, Yue L, Cui G (2013) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv 4:7845–7850

    Article  CAS  Google Scholar 

  7. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27

    Article  CAS  Google Scholar 

  10. Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320

    Article  CAS  Google Scholar 

  11. Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membrane Sci 498:147–157

    Article  CAS  Google Scholar 

  12. Deng Y, Song X, Ma Z, Zhang X, Shu D, Nan J (2016) Al2O3/PVdF–HFP–CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochem Acta 212:416–425

    Article  CAS  Google Scholar 

  13. Jeon H, Yeon D, Lee T, Park J, Ryou MH, Yong ML (2016) A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168

    Article  CAS  Google Scholar 

  14. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886. https://doi.org/10.1039/C4EE01432D

    Article  CAS  Google Scholar 

  15. Jeong YB, Kim DW (2004) Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium-ion polymer cells. J Power Sources 128:256–262

    Article  CAS  Google Scholar 

  16. Hwang K, Kwon B, Byun H (2011) Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators. J Membr Sci 378:111–116

    Article  CAS  Google Scholar 

  17. Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23:3066–3070

    Article  CAS  PubMed  Google Scholar 

  18. Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 8:364–368

    Article  CAS  Google Scholar 

  19. Zhang P, Chen LX, Shi C, Yang PT, Zhao JB (2015) Development and characterization of silica tube-coated separator for lithium ion batteries. J Power Sources 284:10–15

    Article  CAS  Google Scholar 

  20. Shi JL, Fang LF, Li H, Zhang H, Zhu BK, Zhu LP (2013) Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J Membr Sci 437:160–168

    Article  CAS  Google Scholar 

  21. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104:4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  22. Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662

    Article  CAS  Google Scholar 

  23. He MN, Zhang XJ, Yang K, Wang J, Wang Y (2015) Pure inorganic separator for lithium ion batteries. ACS Appl Mater Interfaces 7:738–742

    Article  CAS  PubMed  Google Scholar 

  24. Xiao W, Gong YQ, Wang H, Zhao LN, Liu JG, Yan CW (2015) Preparation and electrochemical performance of ZrO2 nanoparticle embedded nonwoven composite separator for lithium-ion batteries. Ceram Int 41:14223–14229

    Article  CAS  Google Scholar 

  25. Zhu XM, Jiang XY, Ai XP, Yang HX, Cao YL (2015) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126

    Article  CAS  PubMed  Google Scholar 

  26. Shi C, Zhang P, Huang SH, He XY, Yang PT, Wu DZ, Sun DH, Zhao JB (2015) Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources 298:158–165

    Article  CAS  Google Scholar 

  27. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364

    Article  CAS  Google Scholar 

  28. Fang M, Ho T, Yen J, Lin Y, Hong J, Wu S, Jow J (2015) Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries. Mater 8:3550–3561. https://doi.org/10.3390/ma8063550

    Article  CAS  Google Scholar 

  29. Liang Z, Zheng G, Liu C, Liu N, Li W, Yan K, Yao H, Hsu P, Chu S, Cui Y (2015) Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett 15:2910–2916. https://doi.org/10.1021/nl5046318

    Article  CAS  PubMed  Google Scholar 

  30. Kumar J, Kichambare P, Rai AK, Bhattacharya R, Rodrigues S (2016) A high performance ceramic-polymer separator for lithium batteries. J Power Sources 301:194–198. https://doi.org/10.1016/j.jpowsour.2015.09.117

    Article  CAS  Google Scholar 

  31. Zhang J, Yue L, Kong Q et al (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935. https://doi.org/10.1038/srep03935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansen AN, Kahaian AJ, Kepler KD et al (1999) Development of a high-power lithium-ion battery. J Power Sources 81:902–905

    Article  Google Scholar 

  33. Wu H, Zhuo D, Kong D et al (2014) Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 5(1):5193

    Article  CAS  PubMed  Google Scholar 

  34. Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155(2):401–414

    Article  CAS  Google Scholar 

  35. Tingfeng Y, Caibo Y, Yanrong Z et al (2009) A review of research on cathode materials for power lithium ion batteries. Rare Metal Mater Eng 38(9):1687–1692

    Google Scholar 

  36. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212

    Article  CAS  Google Scholar 

  37. Qian J, Henderson WA, Xu W et al (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee H, Alcoutlabi M, Toprakci O et al (2014) Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. J Solid State Electrochem 18(9):2451–2458

    Article  CAS  Google Scholar 

  39. Yang M, Hou J (2012) Membranes in lithium ion batteries. Membrane 2(3):367–383

    Article  CAS  Google Scholar 

  40. Wang YS, Li SM, Hsiao ST et al (2014) Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume-and high-area-specific capacitance. Carbon 73:87–98

    Article  CAS  Google Scholar 

  41. Zeng Z, Jiang X, Wu B, Xiao L, Ai X, Yang H, Cao Y (2014) Bis(2,2,2-trifluoroethyl) methylphosphonate: an novel flame-retardant additive for safe lithium-ion battery. Electrochim Acta 129:300–304

    Article  CAS  Google Scholar 

  42. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  43. Sequeira C, Santos D (eds) (2010) Polymer electrolytes: fundamentals and applications. Elsevier

    Google Scholar 

  44. Tasaki K, Goldberg A, Winter M (2011) On the difference in cycling behaviors of lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes. Electrochim Acta 56:10424–10435

    Article  CAS  Google Scholar 

  45. He T, Zhou Z, Xu W et al (2009) Preparation and photocatalysis of TiO2-fluoropolymer electrospun fiber nanocomposites. Polymer (Guildf) 50:3031–3036. https://doi.org/10.1016/j.polymer.2009.04.015

  46. Li W-L, Gao Y-M, Wang S-M (2012) Gel polymer electrolyte with semi-IPN fabric for polymer lithium-ion battery. J Appl Polym Sci 125:1027–1032. https://doi.org/10.1002/app.33963

  47. Isken P, Winter M, Passerini S, Lex-Balducci A (2013) Methacrylate based gel polymer electrolyte for lithium-ion batteries. J Power Sources 225:157–162. https://doi.org/10.1016/j.jpowsour.2012.09.098

  48. Sil A, Sharma R, Ray S (2015) Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion. Surf Coatings Technol 271:201–206. https://doi.org/10.1016/j.surfcoat.2014.12.036

  49. Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes. Electrochim Acta 55:1836–1842. https://doi.org/10.1016/j.electacta.2009.10.076

  50. Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA–PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132–2138. https://doi.org/10.1016/j.jnoncrysol.2011.03.004

  51. Park J-K (ed) (2012) Principles and applications of lithium secondary batteries. Wiley-VCH, Weinheim

    Google Scholar 

  52. Orbakh D (1999) Nonaqueous electrochemistry. CRC Press, Boca Raton

    Google Scholar 

  53. Goren A, Costa CM, Machiavello MT, Cintora-Juarez D, Nunes-Pereira J, Tirado JL, Silva MM, Ribelles JG, Lanceros-Mendez S (2015) Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators. Solid State Ion 280:1–9. https://doi.org/10.1016/j.ssi.2015.08.003

  54. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  55. Sadiq M, Sharma AL, Arya A (2016) Optimization of free standing polymer electrolytes films for lithium ion batteries application. Integr Res Adv 3(1):16–20

    Google Scholar 

  56. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017

  57. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809. https://doi.org/10.1007/s11581-012-0760-6

  58. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4

  59. Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163

    CAS  Google Scholar 

  60. Marcinek M, Bac A, Lipka P, Zaleska A, Zukowska G, Borkowska R, Wieczorek W (2000) Effect of filler surface group on ionic interactions in PEG–LiClO4–Al2O3 composite polyether electrolytes. J Phys Chem B 104:11088–11093

    Article  CAS  Google Scholar 

  61. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40(13–14):2251–2258. https://doi.org/10.1016/0013-4686(95)00172-B

  62. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

  63. Yan X, Li Z, Wen Z, Han W (2017) Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 121(3):1431–1435. https://doi.org/10.1021/acs.jpcc.6b10268

  64. He D, Cho SY, Kim DW, Lee C, Kang Y (2012) Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo(ethyleneoxy)cyclotriphosphazenes. Macromolecules 45(19):7931–7938. https://doi.org/10.1021/ma3016745

  65. Ma T, Yu X, Cheng X, Li H, Zhu W, Qiu X (2017) Confined solid electrolyte interphase growth space with solid polymer electrolyte in hollow structured silicon anode for Li-Ion batteries. ACS Appl Mater Interfaces 9(15):13247–13254. https://doi.org/10.1021/acsami.7b03046

  66. Zhai H, Xu P, Ning M, Cheng Q, Mandal J, Yang Y (2017) A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett 17(5):3182–3187. https://doi.org/10.1021/acs.nanolett.7b00715

  67. Liu K, Liu M, Cheng J, Dong S, Wang C, Wang Q, Zhou X, Sun H, Chen X, Cui G (2016) Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim Acta 215:261–266. https://doi.org/10.1016/j.electacta.2016.08.076

  68. Porcarelli L, Manojkumar K, Sardon H, Llorente O, Shaplov AS, Vijayakrishna K, Gerbaldi C, Mecerreyes M (2017) Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim Acta 241:526–534. https://doi.org/10.1016/j.electacta.2017.04.132

  69. Liu L, Wu X, Li T (2014) Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length. J Power Sources 249:397–404. https://doi.org/10.1016/j.jpowsour.2013.10.116

  70. Chang Z, Zhang M, Hudson AG, Orler EB, Moore RB, Wilkes GL, Turner SR (2013) Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 54(26):6910–6917. https://doi.org/10.1016/j.polymer.2013.10.028

  71. Wang S, Jeung S, Min K (2010) The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes. Polymer 51(13):2864–2871. https://doi.org/10.1016/j.polymer.2010.04.022

  72. Bao J, Tao C, Yu R, Gao M, Huang Y, Chen CH (2017) Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries. J Appl Polym Sci 134(48):45554. https://doi.org/10.1002/app.45554

  73. Mustapa SR, Aung MM, Ahmad A, Mansor A, TianKhoon L (2016) Preparation and characterization of jatropha oil-based polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. Electrochim Acta 222:293–302. https://doi.org/10.1016/j.electacta.2016.10.173

  74. Wang S, Min K (2010) Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer 51(12):2621–2628. https://doi.org/10.1016/j.polymer.2010.04.038

  75. Tan R, Gao R, Zhao Y, Zhang M, Xu J, Yang J, Pan F (2016) Novel organic–inorganic hybrid electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature. ACS Appl Mater Interfaces 8(45):31273–31280. https://doi.org/10.1021/acsami.6b09008

  76. Meyer W (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448

    Article  CAS  PubMed  Google Scholar 

  77. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  78. Wu CG, Lu MI, Tsai CC, Chuang HJ (2006) PVdF–HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electrolytes. J Power Sources 159:295–300

    Article  CAS  Google Scholar 

  79. Tian Z, He XM, Pu WH, Wan CR, Jiang CY (2006) Preparation of poly(acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochim Acta 52:688–693

    Article  CAS  Google Scholar 

  80. Pu WH, He XM, Wang L, Tian Z, Jiang CY, Wan CR (2008) Preparation of P(AN–MMA) gel electrolyte for Li-ion batteries. Ionics 14:27–31

    Article  CAS  Google Scholar 

  81. Tang JW, Muchakayala R, Song SH, Wang M, Kumar KN (2016) Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF–HFP polymer electrolyte films. Polym Test 50:247–254

    Article  CAS  Google Scholar 

  82. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385

    Article  CAS  Google Scholar 

  83. Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186

    Article  CAS  Google Scholar 

  84. Ramkumar R, Sundaram MM (2016) A biopolymer gel-decorated cobalt molybdate nanowafer: effective graft polymer cross-linked with an organic acid for better energy storage. New J Chem 40:2863–2877

    Article  CAS  Google Scholar 

  85. Ashrafi R, Sahu DK, Kesharwani P, Ganjir M, Agrawal RC (2014) Ag+-ion conducting nano-composite polymer electrolytes (NCPEs): synthesis, characterization and all-solid-battery studies. J Non-Cryst Solids 391:91–95

    Article  CAS  Google Scholar 

  86. Verma ML, Minakshi M, Singh NK (2014) Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochim Acta 137:497–503

    Article  CAS  Google Scholar 

  87. Yang P, Liu L, Li L, Hou J, Xu Y, Ren X, An M, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115:454–460

    Article  CAS  Google Scholar 

  88. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  89. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164

    Article  Google Scholar 

  90. Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2013) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81

    Article  Google Scholar 

  91. Xiao SY, Yang YQ, Li MX, Wang FX, Chang Z, YP W, Liu X (2014) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58

    Google Scholar 

  92. Wen H, Zhang J, Chai J, Ma J, Yue L, Dong T, Zang X, Liu Z, Zhang B, Cui G (2017) Sustainable and superior heat-resistant alginate nonwoven separator of LiNi0.5Mn1.5O4/li batteries operated at 55 °C. ACS Appl Mater Interfaces 9:3694–3701

    Article  CAS  PubMed  Google Scholar 

  93. Ge Y, Xiao D, Li Z, Cui X (2014) Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J Mater Chem A 2:2136–2145

    Article  CAS  Google Scholar 

  94. Appetecchi GB, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M (2003) Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. J Power Sources 124(1):246–253. https://doi.org/10.1016/S0378-7753(03)00611-6

  95. Zaghib K, Striebel K, Guerfi A, Shim J, Armand M, Gauthier M (2004) LiFePO4/polymer/natural graphite: low cost Li-ion batteries. Electrochim Acta 50(2–3):263–270. https://doi.org/10.1016/j.electacta.2004.02.073

  96. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184. https://doi.org/10.1021/jz1015422

  97. Croce F, d’Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid State Lett 5(3):A47–A50. https://doi.org/10.1149/1.1449302

  98. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185. https://doi.org/10.1039/C1EE01263K

  99. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6(10):A207. https://doi.org/10.1149/1.1601372

  100. Costa LT, Sun B, Jeschull F, Brandell D (2015) Polymer-ionic liquids ternary systems for electrolytes: molecular dynamics studies of LiTFSI in an EMIm-TFSI and PEO blend. J Chem Phys 143(1–9):024904. https://doi.org/10.1063/1.4926470

  101. Matsumoto K, Endo T (2011) Preparation and properties of ionic-liquid-containing poly(ethylene glycol)-based networked polymer films having lithium salt structures. J Polym Sci Part A Polym Chem 49(16):3582–3587. https://doi.org/10.1002/pola.24795

  102. Kovalska E, Kocabas C (2016) Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid. Mater Today Comm 7:155–160

    Article  CAS  Google Scholar 

  103. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186

    Article  CAS  Google Scholar 

  104. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  105. Choi JA, Yoo JH, Yoon WY, Kim DW (2014) Cycling characteristics of lithium powder polymer cells assembled with cross-linked gel polymer electrolyte. Electrochim Acta 132:1–6

    Article  CAS  Google Scholar 

  106. Lim DH, Manuel J, Ahn JH, Kim JK, Jacobsson P, Matic A, Ha JK, Cho KK, Kim KW (2012) Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous membranes containing polymer plasticizers for lithium batteries. Solid State Ion 225:631–635

    Article  CAS  Google Scholar 

  107. Kuo PL, Tsao CH, Hsu CH, Chen ST, Hsu HM (2016) A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J Membrane Sci 499:462–469

    Article  CAS  Google Scholar 

  108. Nunes-Pereira J, Lopes AC, Costa CM, Leones R, Silva MM, Lanceros-Méndez S (2012) Porous membrane of montmorillonite/poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators. Electroanalysis 24:2147–2156

    Article  CAS  Google Scholar 

  109. Padmaraj O, Venkateswarlu M, Satyanarayana N (2014) Characterization and electrochemical properties of p(VdF-co-HFP) based electrospun nanocomposite fibrous polymer electrolyte membrane for Lithium battery applications. Electroanalysis 26:2373–2379

    Article  CAS  Google Scholar 

  110. Kim JK, Niedzicki L, Scheers J, Shin CR, Lim DH, Wieczorek W, Johansson P, Ahn JH, Matic A, Jacobsson P (2013) Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide-based polymer electrolytes for high safety lithium batteries. J Power Sources 224:93–98

    Article  CAS  Google Scholar 

  111. Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015) A Quaternary poly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl) imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim Acta 175:134–140

    Article  CAS  Google Scholar 

  112. Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrogen Energ 39:2929–2935

    Article  CAS  Google Scholar 

  113. Kang Y, Cho N, Noh KA, Kim J, Lee C (2005) Improvement on cycling efficiency of lithium by PEO-based surfactants in cross-linked gel polymer electrolyte. J Power Sources 146:171–175

    Article  CAS  Google Scholar 

  114. Samad YA, Asghar A, Hashaikeh R (2013) Electrospun cellulose/PEO fiber mats as a solid polymer electrolytes for Li ion batteries. Renew Energy 56:90–95

    Article  CAS  Google Scholar 

  115. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrogen Energ 42:7212–7219

    Article  CAS  Google Scholar 

  116. Krishna Jyothi N, Ratnam KKV, Murthy PN, Kumar KV (2016) Electrical studies of gel polymer electrolyte based on PAN for electrochemical cell applications. Mater Today Proc 3:21–30

    Article  Google Scholar 

  117. Osman Z, Ghazali MIM, Othman L, Md Isa KB (2012) AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymerelectrolytes. Results Phys 2:1–4

    Article  CAS  Google Scholar 

  118. Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. Mater Chem 21:14747–14753

    Article  CAS  Google Scholar 

  119. Kim YJ, Ahn CH, Lee MB, Choi MS (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127:137–142

    Article  CAS  Google Scholar 

  120. Masoud EM (2016) Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: preparation, characterization and application as an electrolyte in lithium ion batteries. Polym Test 56:65–73

    Article  CAS  Google Scholar 

  121. Rhoo HJ, Kim H, Park J, Hwang T (1997) Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim Acta 42:1557–1579

    Article  Google Scholar 

  122. Ma X, Huang X, Gao J, Zhang S, Deng Z, Suo J (2014) Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries. Electrochim Acta 115:216–222

    Article  CAS  Google Scholar 

  123. He X, Shi Q, Zhou Q, Wan C, Jiang C (2005) In situ composite of nano SiO2–P(VDF–HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069–1075

    Article  CAS  Google Scholar 

  124. Li Z, Zhang H, Zhang P, Li GC, Wu Y, Zhou XD (2008) Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J Membr Sci 322:416–422

    Article  CAS  Google Scholar 

  125. Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–214

    Article  CAS  Google Scholar 

  126. Xiao QZ, Li ZH, Gao DS, Zhang HL (2009) A noval sandwiched membranes as polymer electrolyte for application in lithium ion battery. J Membr Sci 326:260–264

    Article  CAS  Google Scholar 

  127. Li X, Cao Q, Wang X, Jiang S, Deng H, Wu N (2011) Preparation of poly(vinylidene fluoride)/poly(methyl methacrylate) membranes by novel electrospinning system for lithium ion batteries. J Appl Polym Sci 122:2616–2620

    Article  CAS  Google Scholar 

  128. Wongittharom N, Lee TC, Hsu CH, Fey GTK, Huang KP, Chang JK (2013) Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: effects of Li salt at 25 °C and 50 °C. J Power Sources 240:676–682

    Article  CAS  Google Scholar 

  129. Galiński M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  130. Lewandowski A, Swiderska-mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609

    Article  CAS  Google Scholar 

  131. Madria N, Arunkumar TA, Nair NG, Vadapalli A, Huang YW, Jones SC, Prakash Reddy V (2013) Ionic liquid electrolytes for lithium batteries: synthesis, electrochemical, and cytotoxicity studies. J Power Sources 234:277–284

    Article  CAS  Google Scholar 

  132. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim K, Cho YH, Shin HC (2013) 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118

    Article  CAS  Google Scholar 

  134. Menne S, Kühnel RS, Balducci A (2013) The influence of the electrochemical and thermal stability of mixtures of ionic liquid and organic carbonate on the performance of high power lithium-ion batteries. Electrochim Acta 90:641–648

    Article  CAS  Google Scholar 

  135. Zheng H, Jiang K, Abe T, Ogumi Z (2006) Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 44:203–210

    Article  CAS  Google Scholar 

  136. Lombardo L, Brutti S, Navarra MA, Panero S, Reale P (2013) Mixtures of ionic liquid-alkylcarbonates as electrolytes for safe lithium-ion batteries. J Power Sources 227:8–14

    Article  CAS  Google Scholar 

  137. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K (2008) LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J Power Sources 175:866–873

    Article  CAS  Google Scholar 

  138. Lewandowski A, Acznik I, Swiderska-Mocek A (2010) LiFePO4 cathode in N-methyl-N-propylpiperidinium and N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Appl Electrochem 40:1619–1624

    Article  CAS  Google Scholar 

  139. Courtemanche RJM, Pinter T, Hof F (2011) Just add tetrazole: 5-(2-Pyrrolo) tetrazoles are simple, highly potent anion recognition elements. Chem Commun 47(47):12688–12690

    Article  CAS  Google Scholar 

  140. He J, Wang J, Zhong H, Ding J, Zhang L (2015) Cyanoethylated carboxymethyl chitosan as water soluble binder with enhanced adhesion capability and electrochemical performances for LiFePO4 cathode. Electrochim Acta 182:900–907. https://doi.org/10.1016/j.electacta.2015.10.006

  141. Qiu L, Shao Z, Wang D, Wang F, Wang W, Wang J (2014) Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydr Polym 112:532–538. https://doi.org/10.1016/j.carbpol.2014.06.034

  142. Prasanna K, Kim C-S, Lee CW (2014) Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Mater Chem Phys 146:545–550. https://doi.org/10.1016/j.matchemphys.2014.04.014

    Article  CAS  Google Scholar 

  143. Xu Q, Kong QS, Liu ZH et al (2014) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng 2:194–199. https://doi.org/10.1021/sc400370h

    Article  CAS  Google Scholar 

  144. Zhang J, Yue L, Kong Q et al (2013) A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery. J Electrochem Soc 160:A769–A774. https://doi.org/10.1149/2.043306jes

    Article  CAS  Google Scholar 

  145. Zhou X, Yue L, Zhang J, Kong Q, Liu Z, Yao J, Cui G (2013) A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J Electrochem Soc 160:A1341–A1347. https://doi.org/10.1149/2.003309jes

    Article  CAS  Google Scholar 

  146. He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G (2017) Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim Acta 225:151–159. https://doi.org/10.1016/j.electacta.2016.12.113

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Writer, B. (2019). Ionic Conductivity, Polymer Electrolyte, Membranes, Electrochemical Stability, Separators. In: Lithium-Ion Batteries. Springer, Cham. https://doi.org/10.1007/978-3-030-16800-1_3

Download citation

Publish with us

Policies and ethics