Skip to main content

Anode Materials, SEI, Carbon, Graphite, Conductivity, Graphene, Reversible, Formation

  • Chapter
  • First Online:
Book cover Lithium-Ion Batteries
  • 118k Accesses

Abstract

Lithium-ion batteries (Li-ion batteries) have been commonly used as power sources in consumer electronics including laptops, cellular phones, and full and hybrid electric vehicles because of their long cycling life, high energy capacity, and eco-friendliness.

This book was machine-generated

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Main Document References

  1. Xu Y, Hou S, Yang G et al (2018) J Solid State Electrochem 22:785. https://doi.org/10.1007/s10008-017-3811-0

  2. Jiao Z, Gao R, Tao H et al (2016) J Nanopart Res 18:307. https://doi.org/10.1007/s11051-016-3617-5

  3. Lu HH, Shi CS, Zhao NQ et al (2018) Rare Met 37:107. https://doi.org/10.1007/s12598-017-0983-9

  4. Li F, Zhai G, Ren H et al (2018) Ionics 24:111. https://doi.org/10.1007/s11581-017-2173-z

  5. Li G, He B, Zhou M et al (2017) Ionics 23:607. https://doi.org/10.1007/s11581-016-1822-y

  6. Long B, Chen S, Wang B et al (2018) J Nanopart Res 20:164. https://doi.org/10.1007/s11051-018-4263-x

  7. Zhou R, Chen Y, Fu Y et al (2018) Ionics 24:1595. https://doi.org/10.1007/s11581-017-2329-x

  8. Cai S, Wang G, Jiang M et al (2017) J Solid State Electrochem 21:1129. https://doi.org/10.1007/s10008-016-3414-1

  9. Xu S, Zhang Z, Wu T et al (2018) Ionics 24:99. https://doi.org/10.1007/s11581-017-2191-x

  10. Wang Y, Jin Y, Duan Y et al (2017) Ionics 23:2005. https://doi.org/10.1007/s11581-017-2044-7

  11. Yao L, Su Q, Xiao Y et al (2017) J Nanopart Res 19:261. https://doi.org/10.1007/s11051-017-3935-2

  12. Pramanik A, Maiti S, Sreemany M et al (2016) J Nanopart Res 18:93. https://doi.org/10.1007/s11051-016-3401-6

  13. Gao Y, Li J, Liu Y et al (2017) Ionics 23:2301. https://doi.org/10.1007/s11581-017-2089-7

  14. Chen Y, Li J, Yue G et al (2017) Nano-Micro Lett 9:32. https://doi.org/10.1007/s40820-017-0131-y

  15. Zhou R, Chen Y, Fu Y et al (2018) Ionics 24:1321. https://doi.org/10.1007/s11581-017-2294-4

  16. Xu J, Tang H, Xu T et al (2017) Ionics 23:3273. https://doi.org/10.1007/s11581-017-2160-4

  17. Lu L, Xu S, Luo Z et al (2016) J Nanopart Res 18:183. https://doi.org/10.1007/s11051-016-3492-0

  18. Shan H, Zhao Y, Li X et al (2016) J Appl Electrochem 46:851. https://doi.org/10.1007/s10800-016-0961-1

  19. Xu Z, Liu W, Yang Y et al (2017) Nanoscale Res Lett 12:615. https://doi.org/10.1186/s11671-017-2382-4

  20. Fu Y, Zhong B, Chen Y et al (2017) J Porous Mater 24:613. https://doi.org/10.1007/s10934-016-0297-6

  21. Li D, Guo E, Lu Q et al (2017) J Solid State Electrochem 21:2313. https://doi.org/10.1007/s10008-017-3579-2

  22. Wu J, Lau WM, Geng DS (2017) Rare Met 36:307. https://doi.org/10.1007/s12598-017-0904-y

  23. Lu L, Min F, Luo Z et al (2016) J Nanopart Res 18:357. https://doi.org/10.1007/s11051-016-3677-6

  24. Zhang Y, Wang Q, Wang B et al (2017) Ionics 23:1407. https://doi.org/10.1007/s11581-017-1975-3

  25. Li Y, Wu X (2018) Ionics 24:1329. https://doi.org/10.1007/s11581-017-2291-7

  26. Li J, Huang S, Xu S, Lan L, Lu L, Li S (2017) Nanoscale Res Lett 12(1):576. https://doi.org/10.1186/s11671-017-2342-z

  27. Cao Z, Meng H, Dou P et al (2017) J Solid State Electrochem 21:955. https://doi.org/10.1007/s10008-016-3440-z

  28. Steinhauer M, Diemant T, Heim C et al (2017) J Appl Electrochem 47:249. https://doi.org/10.1007/s10800-016-1032-3

  29. Tang WJ, Peng WJ, Yan GC et al (2017) Ionics 23:3281. https://doi.org/10.1007/s11581-017-2143-5

  30. Bian S, Liu M, Shi Y et al (2018) Ionics 24:1919. https://doi.org/10.1007/s11581-018-2445-2

  31. Kuriganova AB, Vlaic CA, Ivanov S et al (2016) J Appl Electrochem 46:527. https://doi.org/10.1007/s10800-016-0936-2

  32. Lu W, Xiong S, Xie K et al (2016) Ionics 22:2095. https://doi.org/10.1007/s11581-016-1743-9

  33. Nowak AP, Lisowska-Oleksiak A, Wicikowska B et al (2017) J Solid State Electrochem 21:2251. https://doi.org/10.1007/s10008-017-3561-z

  34. Wang QT, Li RR, Zhou XZ et al (2016) J Solid State Electrochem 20:1331. https://doi.org/10.1007/s10008-016-3127-5

  35. Arai S, Fukuoka R (2016) J Appl Electrochem 46:331. https://doi.org/10.1007/s10800-016-0933-5

  36. Tian J, Zhao F, Xue P et al (2017) Ionics 23:1357. https://doi.org/10.1007/s11581-016-1947-z

  37. Wang R, Feng L, Yang W, Zhang Y, Zhang Y, Bai W, Liu B, Zhang W, Chuan Y, Zheng Z, Guan H (2017) Nanoscale Res Lett 12:575. https://doi.org/10.1186/s11671-017-2348-6

  38. Li Y, Levine AM, Zhang J et al (2018) J Appl Electrochem 48:811. https://doi.org/10.1007/s10800-018-1205-3

  39. Ho DN, Yildiz O, Bradford P et al (2018) J Appl Electrochem 48:127. https://doi.org/10.1007/s10800-017-1140-8

  40. Su M, Liu Y, Wan H et al (2017) Ionics 23:405. https://doi.org/10.1007/s11581-016-1867-y

  41. Wang J, Qin X, Yan X et al (2017) Ionics 23:1131. https://doi.org/10.1007/s11581-016-1909-5

  42. Son BD, Lee JK, Yoon WY (2018) Nanoscale Res Lett 13(1):58. https://doi.org/10.1186/s11671-018-2460-2

  43. Song HY, Fukutsuka T, Miyazaki K et al (2016) J Appl Electrochem 46:1099. https://doi.org/10.1007/s10800-016-0996-3

  44. Kim HJ, Choi JH, Choi JW (2017) Nano Converg 4(1):24. https://doi.org/10.1186/s40580-017-0118-x

  45. Nowak AP (2018) J Solid State Electrochem 22:2297. https://doi.org/10.1007/s10008-018-3942-y

Other Bibliographic References

  1. Pan QM, Qin LM, Liu J, Wang HB (2010) Flower-like ZnO–NiO–C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim Acta 55:5780–5785

    Article  CAS  Google Scholar 

  2. Lu J, Chen ZH, Ma ZF, Pan F, Curtiss LA, Amine K (2010) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotech 11:1031–1038

    Article  CAS  Google Scholar 

  3. Hameer S, Niekerk JL (2015) A review of large-scale electrical energy storage. Int J Energy Res 39:1179–1195

    Article  Google Scholar 

  4. Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-ion batteries and the role of key parameters—a review. Renew Sust Energ Rev 67:491–506

    Article  CAS  Google Scholar 

  5. Wang BB, Wang G, Cheng XM, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202

    Article  CAS  Google Scholar 

  6. Xu X, Tan H, Xi K, Ding SJ, Yu DM, Cheng SD, Yang G, Peng XY, Fakeeh A, Kumar RV (2015) Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 84:491–499

    Article  CAS  Google Scholar 

  7. Zou F, Chen YM, Liu KW, Yu ZT, Liang WF, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Jiang DG, Zhang XG (2016) Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode. Nano-Struct Nano-Objects 5:1–6

    Article  CAS  Google Scholar 

  9. Mollamahale YB, Liu Z, Zhen YD, Tian ZQ, Hosseini D, Chen LW, Shen PK (2016) Simple fabrication of porous NiO nanoflowers: growth mechanism, shape evolution and their application into Li-ion batteries. Int J Hydrog Energy 42:7202–7211

    Article  CAS  Google Scholar 

  10. Huang G, Zhang FF, Du XC, Qin YL, Yin DG, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou YL, Qi ZG, Ma ZS, Jiang WJ, Hu RW, Duan JL (2017) MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries. J Electroanal Chem 788:184–191

    Article  CAS  Google Scholar 

  12. Zhang H, Tao H, Jiang Y, Jiao Z, Minghong Wu, Zhao B (2010) Ordered nanostructure CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J Power Sources 195:2950–2955

    Article  CAS  Google Scholar 

  13. Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20:5462–5467

    Article  CAS  Google Scholar 

  14. Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New J Chem 37:3671–3678

    Article  CAS  Google Scholar 

  15. Han S, Jiang J, Huang Y, Tang Y, Cao J, Wu D, Feng X (2015) Hierarchical TiO2–SnO2–graphene aerogels for enhanced lithium storage. Phys Chem Chem Phys 17:1580–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang Y, Wu D, Chen S, Zhang F, Jia J, Feng X (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447–2451

    Article  CAS  Google Scholar 

  17. Xia T, Zhang W, Wang ZH, Zhang YL, Song XY, Murowchick J, Battaglia V, Liu G, Chen X (2014) Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6:109

    Article  CAS  Google Scholar 

  18. Xing Z, Asiri AM, Obaid AY, Sun X, Ge X (2014) Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv 4(18):9061

    Article  CAS  Google Scholar 

  19. Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141

    Article  CAS  Google Scholar 

  20. Moitzheim S, Nimisha CS, Deng S, Cott DJ, Detavernier C, Vereecken PM (2014) Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries. Nanotechnology 25(50):504008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 122(24):4153

    Article  Google Scholar 

  22. Bai L, Fang F, Zhao YY, Liu YG, Li JP, Huang GY, Sun HY (2014) A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. RSC Adv 4:43039–43046

    Article  CAS  Google Scholar 

  23. Xiao CL, Zhang SC, Wang SB, Xing YL, Lin RX, Wei X, Wang WX (2016) ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery. Electrochim Acta 189:245–251

    Article  CAS  Google Scholar 

  24. Xiao SN, Pan DL, Wang LJ, Zhang ZZ, Lyu ZY, Dong WH, Chen XL, Zhang DQ, Chen W, Li HX (2016) Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries. NANO 8:19343–19351

    CAS  Google Scholar 

  25. Wang BB, Wang G, Zheng ZZ, Wang H, Bai JT, Bai JB (2013) Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. Electrochim Acta 106:235–243

    Article  CAS  Google Scholar 

  26. Huang GY, Xu SM, Cheng YB, Zhang WJ, Li J, Kang XH (2015) NiO nanosheets with large specific surface area for lithium-ion batteries and supercapacitors. Int J Electrochem Sci 10:2594–2601

    CAS  Google Scholar 

  27. Huang GY, Xu SM, Yang Y, Sun HY, Li ZB, Chen Q, Lu SS (2014) Micro-spherical CoCO3 anode for lithium-ion batteries. Mater Lett 131:236–239

    Article  CAS  Google Scholar 

  28. Huang GY, Xu SM, Yang Y, Chen YB, Li ZB (2015) Rapid-rate capability of micro-/nano-structured CoO anodes with different morphologies for lithium-ion batteries. Int J Electrochem Sci 10:10587–10596

    CAS  Google Scholar 

  29. Yan CS, Chen G, Zhou X, Sun JX, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436

    Article  CAS  Google Scholar 

  30. Wang YQ, Geng FS, Yue XB, Yuan AB, Xu JQ (2016) Enhanced lithium storage performance of a self-assembled hierarchical porous Co3O4/VGCF hybrid high-capacity anode material for lithium-ion batteries. Ionics 1–8

    Google Scholar 

  31. Liu CF, Zhang CK, Song HQ, Zhang CP, Liu YG, Nan XH, Cao GZ (2016) Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22:290–300

    Article  CAS  Google Scholar 

  32. Huang GY, Xu SM, Li LY, Wang XJ, Lu SS (2014) Synthesis and modification of a lamellar Co3O4 anode for lithium-ion batteries. Acta Phys Chim Sin 30:1121–1126

    CAS  Google Scholar 

  33. Huang GY, Xu SM, Lu SS, Li LY, Sun HY (2014) Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries. Electrochim Acta 135:420–427

    Article  CAS  Google Scholar 

  34. Zhang DW, Qian A, Chen JJ, Wen JW, Wang L, Chen CH (2012) Electrochemical performances of nano-Co3O4 with different morphologies as anode materials for Li-ion batteries. Ionics 18:591–597

    Article  CAS  Google Scholar 

  35. Ma JM, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187

    Article  CAS  Google Scholar 

  36. Fan S, Liu XJ, Li YF, Yan E, Wang CH, Liu JH, Zhang Y (2013) Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithium-ion batteries. Mater Lett 91:291–293

    Article  CAS  Google Scholar 

  37. Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang GY, Xu SM, Lu SS, Li LY, Sun HY (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6:7236–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye MH, Li CX, Zhao Y, Qu LT (2016) Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon 106:9–19

    Article  CAS  Google Scholar 

  40. Shen LF, Zhang XG, Li HS, Yuan CZ, Cao GZ (2011) Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2:3096–3101

    Article  CAS  Google Scholar 

  41. Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Singh NK, Song JJ, Kim J (2013) Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J Power Sources 244:435–441

    Article  CAS  Google Scholar 

  42. Liu Y, Wang W, Gu L, Wang YW, Ying YL, Mao YY, Sun LW, Peng XS (2013) Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 5:9850–9855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Hu YG, Zhu DZ, Xie AJ, Shen YH (2016) A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries. Ceram Int 42:1833–1839

    Article  CAS  Google Scholar 

  44. Zhou X, Xi L, Chen F, Bai T, Wang B, Yang J (2016) In situ growth of SnO2, nanoparticles in heteroatoms doped cross-linked carbon frameworks for lithium ion batteries anodes. Electrochim Acta 213:633–640

    Article  CAS  Google Scholar 

  45. Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2009) Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B 113:224–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ionics 123(1):165

    Google Scholar 

  47. Chu S, Zhong Y, Cai R, Zhang Z, Wei S, Shao Z (2016) Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free standing electrodes for lithium-ion batteries. Small 12(48):6724–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Weng Q, Liu X, Wang X, Tang DM, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of n-doped graphene for lithium storage. Nano Lett 14(3):1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xing LB, Hou SF, Zhang JL, Zhou J, Li Z, Si W, Zhuo S (2015) A facile preparation of three dimensional N, S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Mater Lett 147:97–100

    Article  CAS  Google Scholar 

  51. Zhuang GL, Bai J, Tao X, Luo JM, Wang X, Gao Y, Zhong X, Li XN, Wang JG (2015) Synergistic effect of S, N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and li-ion batteries. J Mater Chem A 3(40):20244–20253

    Article  CAS  Google Scholar 

  52. Wu S, Xia T, Wang J, Lu F, Xu C, Zhang X, Huo L, Zhao H (2017) Ultrathin mesoporous Co3O4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries. Appl Surf Sci 406:46–55

    Article  CAS  Google Scholar 

  53. Jin Y, Wang L, Shang Y, Gao J, Li J, He X (2014) Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochim Acta 151:109–117

    Article  CAS  Google Scholar 

  54. Wang Y, Ding PS, Wang C (2016) J Alloys Compd 654:273–279

    Article  CAS  Google Scholar 

  55. Yang Q, Wu J, Huang K, Lei M, Wang WJ, Tang SS, Lu PJ, Lu YK, Li J (2016) J Alloys Compd 667:29–35

    Article  CAS  Google Scholar 

  56. Glushenkov AM, Hassan MF, Stukachev VI, Guo Z, Liu HK, Kuvshinov GG, Chen Y (2010) J Solid State Electrochem 14:1841–1846

    Article  CAS  Google Scholar 

  57. Zhou ZY, Xie WH, Li SY, Jiang XY, He DY, Peng SL, Ma F (2015) J Solid State Electrochem 19:1211–1215

    Article  CAS  Google Scholar 

  58. Niu CJ, Meng JS, Han CH, Zhao KN, Yan MY, Mai LQ (2014) Nano Lett 14:2873–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Z, Su F, Madhavi S, Lou XW (2011) Nanoscale 3:1618–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mo YD, Ru Q, Song X, Hu SJ, Guo LY, Chen XQ (2015) Electrochim Acta 176:575–585

    Article  CAS  Google Scholar 

  61. Chen H, Zhang Q, Wang J, Wang Q, Zhou X, Li X, Yang Y, Zhang K (2014) Nano Energy 10:245–258

    Article  CAS  Google Scholar 

  62. Mohamed SG, Chen CJ, Chen CK, Hu SF, Liu RS (2014) ACS Appl Mater Interfaces 6:22701–22708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) ACS Appl Mater Interfaces 6:2439–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  65. Zhang GQ, Lou XW (2014) Angew Chem Int Ed 53:9041–9044

    Article  CAS  Google Scholar 

  66. Liang J, Yu XY, Zhou H, Wu HB, Ding SJ, Lou XW (2014) Angew Chem Int Ed 53:12803–12807

    Article  CAS  Google Scholar 

  67. Wang HG, Yuan S, Ma DL, Zhang XB, Yan JM (2015) Electrospun materials for rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681

    Article  CAS  Google Scholar 

  68. Guo R, Zhao L, Yue W (2015) Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries. Electrochim Acta 152:338–344

    Article  CAS  Google Scholar 

  69. Chen T, Pan L, Loh TAJ, Chua DHC, Yao Y, Chen Q, Li D, Qin W, Sun Z (2014) Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Trans 43:14931–14935

    Google Scholar 

  70. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135:7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su LW, Wu XB, Zheng LH, Zheng TL, Hei JP, Wang LB, Wang YH, Ren MM (2016) Excellent lithium storage materials consisting of highly distributed Fe3O4 quantum dots on commercially available graphite nanoplates. Part Part Syst Charact 33:597

    Article  CAS  Google Scholar 

  72. Liu SH, Wang YW, Dong YF, Zhao ZB, Wang ZY, Qiu JS (2015) Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life. High-Rate Alkali-Metal Storage 3:38

    Google Scholar 

  73. Liu H, Jia MQ, Zhu QZ, Cao B, Chen RJ, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-PerformanceAnode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  75. Li YN, Chu YQ, Qin QZ (2004) Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J Electrochem Soc 151:A1077–A1083

    Article  CAS  Google Scholar 

  76. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    Article  CAS  Google Scholar 

  77. Lee S, Cho Y, Song HK, Lee KT, Cho J (2012) Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752

    Article  CAS  Google Scholar 

  78. Xiong T, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C Topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22(4):861

    Google Scholar 

  79. Qi Y, Zhang H, Du N, Yang D (2013) Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J Mater Chem A 1:2337–2342

    Article  CAS  Google Scholar 

  80. Huang X, Wang R, Xu D, Wang Z, Wang H, Xu J, Wu Z, Liu Q, Zhang Y, Zhang X (2013) Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater 23:4345–4353

    Article  CAS  Google Scholar 

  81. Guan H, Wang X, Li H, Zhi C, Zhai T, Bando Y, Golberg D (2012) CoO octahedral nanocages for high-performance lithium ion batteries. Chem Commun 48:4878–4880

    Article  CAS  Google Scholar 

  82. Sun Y, Hu X, Luo W, Huang Y (2012) Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries. J Phys Chem C 116:20794

    Article  CAS  Google Scholar 

  83. Sun Y, Hu X, Luo W, Huang Y (2012) Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J Mater Chem 22:13826

    Article  CAS  Google Scholar 

  84. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang H, Qing C, Guo J, Aref AA, Sun D, Wang B, Tang Y (2014) Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J Mater Chem A 2:11776

    Article  CAS  Google Scholar 

  87. Gao Z, Song N, Li X (2015) Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833

    Article  CAS  Google Scholar 

  88. Yang M, Lv F, Wang Z, Xiong Y, Li M, Wang W, Zhang L, Wu S, Liu H, Gu Y, Lu Z (2015) Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Adv 5:31725

    Article  CAS  Google Scholar 

  89. Zhou YQ, Wang HG, Zeng Y, Li C, Shen Y, Chang JJ, Duan Q (2015) Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Mater Lett 155:18–22

    Article  CAS  Google Scholar 

  90. Li WH, Li MS, Wang M, Zeng LC, Yu Y (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693–701

    Article  CAS  Google Scholar 

  91. Ji LW, Yao YF, Toprakci O, Lin Z, Liang YZ, Shi Q, Medford AJ, Millns CR, Zhang XW (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195:2050–2056

    Article  CAS  Google Scholar 

  92. Wu J, Zuo L, Song Y, Chen Y, Zhou R, Chen S, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloy Compd 656:745–752

    Article  CAS  Google Scholar 

  93. Mei T, Zhang L, Wang XB, Qian YT (2014) One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. J Mater Chem 2:11974–11979

    Article  CAS  Google Scholar 

  94. Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133

    Article  CAS  Google Scholar 

  95. Chang JL, Gao ZY, Wang XR, Wu DP, Xu F, Wang X, Guo YM, Jiang K (2015) Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim Acta 157:290–298

    Article  CAS  Google Scholar 

  96. Fey GTK, Chen CL (2001) High-capacity carbons for lithium-ion batteries prepared from rice husk. J Power Sources 97:47–51

    Article  Google Scholar 

  97. Ru HH, Bai NB, Xiang KX, Zhou W, Chen H, Zhao XS (2016) Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 194:10–16

    Article  CAS  Google Scholar 

  98. Cao XY, Chen SQ, Wang GX (2014) Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Mater Lett 4:819–826

    Google Scholar 

  99. Ou J, Zhang YZ, Chen L, Guo Y, Xiao D (2015) Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics 21(7):1881–1891

    Article  CAS  Google Scholar 

  100. Yuan GH, Wang G, Wang H, Bai T (2015) Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries. Ionics 21(2):365–371

    Article  CAS  Google Scholar 

  101. Wang W, Sun Y, Liu B, Wang SG, Cao MH (2015) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65

    Article  CAS  Google Scholar 

  102. Guo DC, Han F, Lu AH (2015) Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chem Eur J 21:1520–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Peng YT, Lo CT (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19:3401–3410

    Article  CAS  Google Scholar 

  104. Li DD, Chen HB, Wei M, Ding LX, Wang SQ, Wang HH (2015) Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94:888–894

    Article  CAS  Google Scholar 

  105. Liu P, Hao QL, Xia XF, Lu L, Lei W, Wang X (2015) 3D hierarchical mesoporous flowerlike cobalt oxide nanomaterials: controllable synthesis and electrochemical properties. J Phys Chem 119:8537–8546

    Article  CAS  Google Scholar 

  106. Du FH, Wang KX, Fu W, Gao PF, Wang JF, Yang J, Chen JS (2013) A graphene-wrapped silver-porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem A 1(43):13648–13654. https://doi.org/10.1039/c3ta13092d

    Article  CAS  Google Scholar 

  107. Song JX, Chen SR, Zhou MJ, Xu T, Lv DP et al (2014) Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J Mater Chem A 2(5):1257–1262. https://doi.org/10.1039/c3ta14100d

    Article  CAS  Google Scholar 

  108. Wang CD, Chui YS, Ma RG, Wong TL, Ren JG, Wu QH, Chen XF, Zhang WJ (2013) A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J Mater Chem A 1(35):10092–10098. https://doi.org/10.1039/c3ta11740e

    Article  CAS  Google Scholar 

  109. Shiva K, Jayaramulu K, Rajendra HB, Maji T, Bhattacharyya AJ (2014) In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Z Anorg Allg Chem 640(6):1115–1118. https://doi.org/10.1002/zaac.201300621

    Article  CAS  Google Scholar 

  110. Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2(2):529–534. https://doi.org/10.1039/c3ta13592f

    Article  CAS  Google Scholar 

  111. Yin JF, Cao HQ, Zhou ZF, Zhang JX, Qu MZ (2012) SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 22(45):23963–23970. https://doi.org/10.1039/c2jm35137d

    Article  CAS  Google Scholar 

  112. Liu X, Zhao C, Zhang H, Shen Q (2015) Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim Acta 151:56–62. https://doi.org/10.1016/j.electacta.2014.11.020

    Article  CAS  Google Scholar 

  113. Zhao S, Wang Y, Liu R, Yu Y, Wei S, Yu F, Shen Q (2015) Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1−xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect. J Mater Chem A 3(33):17181–17189. https://doi.org/10.1039/c5ta03785a

    Article  CAS  Google Scholar 

  114. Feng F, Kang W, Yu F, Zhang H, Shen Q (2015) High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. J Power Sources 282:109–117. https://doi.org/10.1016/j.jpowsour.2015.02.043

    Article  CAS  Google Scholar 

  115. Taillades G, Sarradin J (2004) Silver: high performance anode for thin film lithium ion batteries. J Power Sources 125(2):199–205. https://doi.org/10.1016/j.jpowsour.2003.07.004

    Article  CAS  Google Scholar 

  116. Shilpa A (2015) Sharma, Enhanced electrochemical performance of electrospun Ag/hollow glassy carbon nanofibers as free-standing Li-ion battery anode. Electrochim Acta 176:1266–1271. https://doi.org/10.1016/j.electacta.2015.07.093

    Article  CAS  Google Scholar 

  117. Li ZQ, Yin LW (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3(43):21569–21577. https://doi.org/10.1039/c5ta05733g

    Article  CAS  Google Scholar 

  118. Li C, Chen T, Xu W, Lou X, Pan L, Chen Q, Hu B (2015) Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J Mater Chem A 3(10):5585–5591. https://doi.org/10.1039/c4ta06914e

    Article  CAS  Google Scholar 

  119. Ma JJ, Wang HJ, Yang X, Chai YQ, Yuan R (2015) Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. J Mater Chem A 3(22):12038–12043. https://doi.org/10.1039/c5ta00890e

    Article  CAS  Google Scholar 

  120. Xie Z, He Z, Feng X, Xu W, Cui X et al (2016) Hierarchical sandwich-like structure of ultrafine n-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 8(16):10324–10333. https://doi.org/10.1021/acsami.6b01430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Su P, Xiao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q (2013) Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem Sci 4:2941–2946

    Article  CAS  Google Scholar 

  122. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  123. Song Y, Zuo L, Chen S, Wu J, Hou H, Wang L (2015) Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@ nano-Si as anode materials for lithium-ion batteries. Electrochim Acta 173:588–594

    Article  CAS  Google Scholar 

  124. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100

    Article  CAS  Google Scholar 

  125. Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang C, Lin X (2009) Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 13:1273–1278

    Article  CAS  Google Scholar 

  127. Chen T, Hu Y, Cheng B, Chen R, Lv H, Ma L, Zhu G, Wang Y, Yan C, Tie Z, Jin Z, Liu J (2016) Multi-yolk-shell copper oxide@ carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20:305–314

    Article  CAS  Google Scholar 

  128. Wang L, Zheng Y, Wang X, Chen S, Xu F, Zuo L, Wu J, Sun L, Li Z, Hou H, Song Y (2014) ACS Appl Mater Interfaces 6:7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang L, Zheng Y, Zhang Q, Zuo L, Chen S, Chen S, Hou H, Song Y (2014) Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv 4:51072–51079

    Article  CAS  Google Scholar 

  130. Zhou X, Shi J, Liu Y, Su Q, Zhang J, Du G (2014) Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J Alloy Compd 615:390–394

    Article  CAS  Google Scholar 

  131. Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D (2011) NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J Mater Chem 21:9988–9990

    Article  CAS  Google Scholar 

  132. Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shim HW, Jin YH, Seo SD, Lee SH, Kim DW (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  137. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao SQ, Wei SS, Liu R, Wang YX, Yu Y, Shen Q (2015) Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances. J Power Sources 284:154–161

    Article  CAS  Google Scholar 

  139. Zhang RH, Zhang F, Feng JK, Qian YT (2014) Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries. Mater Lett 118:5–7

    Article  CAS  Google Scholar 

  140. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18:1440–1447

    Article  CAS  Google Scholar 

  143. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Su Y, Li S, Wu D, Zhang F, Liang H, Gao P, Cheng C, Feng X (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang G, Xu S, Lu S, Li L, Sun H (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6:7236–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Su H, Xu YF, Feng SC, Wu ZG, Sun XP, Shen CH et al (2015) Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl Mater Interfaces 7:8488–8494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Köse H, Karaal Ş, Aydın AO, Akbulut H (2015) A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol–gel method. J Power Sources 295:235–245

    Article  CAS  Google Scholar 

  148. Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yan B, Li M, Li X, Bai Z, Dong L, Li D (2015) Electrochemical impedance spectroscopy illuminating performance evolution of porous core-shell structured nickel/nickel oxide anode materials. Electrochim Acta 164:55–61

    Article  CAS  Google Scholar 

  150. Wang M, Yang H, Zhou X, Shi W, Zhou Z, Cheng P (2015) Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs. Chem Commun (Camb) 52:717–720

    Article  CAS  Google Scholar 

  151. Zhong Y, Yang M, Zhou X, Zhou Z (2015) Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Mater Horiz 2:553–566

    Article  CAS  Google Scholar 

  152. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852

    Article  CAS  Google Scholar 

  153. Wi S, Woo H, Lee S, Kang J, Kim J, An S et al (2015) Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials. Nanoscale Res Lett 10:204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949

    Article  CAS  Google Scholar 

  155. Fang S, Shen L, Zheng H, Zhang X (2015) Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. J Mater Chem A 3:1498–1503

    Article  CAS  Google Scholar 

  156. Jiang B, Han C, Li B, He Y, Lin Z (2016) ACS Nano 10:2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) J Mater Chem A 3:7793

    Article  CAS  Google Scholar 

  158. Wang X, Huang L, Zhao Y (2016) Nanoscale Res Lett 11:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Yao X, Kong J, Zhou D, Zhao C, Zhou R, Lu X (2014) Carbon 79:493

    Article  CAS  Google Scholar 

  160. Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Adv Energy Mater 3:513

    Article  CAS  Google Scholar 

  161. Mueller F, Bresser D, Paillard E, Winter M, Passerini S (2013) J Power Sources 236:87

    Article  CAS  Google Scholar 

  162. Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B (2014) Chem Commun 50:8057

    Article  CAS  Google Scholar 

  163. Chen K, Song S, Xue D (2015) J Mater Chem A 3:2441

    Article  CAS  Google Scholar 

  164. Liu J, Xia H, Lu L, Xue D (2010) J Mater Chem 20:1506

    Article  CAS  Google Scholar 

  165. Wu J, Xue D (2011) Nanosci Nanotech Lett 3:371

    Article  CAS  Google Scholar 

  166. Liu J, Xue D (2010) Electrochim Acta 56:243

    Article  CAS  Google Scholar 

  167. Liu J, Liu F, Gao K, Wua J, Xue D (2009) J Mater Chem 19:6073

    Article  CAS  Google Scholar 

  168. Yin YX, Xin S, Guo YG, Wan LJ (2013) Angew Chem Int Ed 52(50):13186–13200

    Article  CAS  Google Scholar 

  169. Liu J, Zhang JG, Yang ZG, Lemmon JP, Imhoff C, Graff GL, Li LY, Hu JZ, Wang CM, Xiao J, Xia GD, Viswanathan VV, Baskaran S, Sprenkle V, Li XL, Shao YY, Schwenzer B (2013) Adv Funct Mater 23(8):929–946

    Article  CAS  Google Scholar 

  170. Bhattab MD, Dwyer CÓ (2015) Phys Chem Chem Phys 17(7):4799–4844

    Article  CAS  Google Scholar 

  171. Goodenough JB, Park KS (2013) J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen ZH, Belharouak I, Sun YK, Amine K (2013) Adv Funct Mater 23(8):959–969

    Article  CAS  Google Scholar 

  173. Li HB, Zhou QY, Gao YT (2015) Nano Res 8(3):900–906

    Article  CAS  Google Scholar 

  174. Peng YT, Lo CT (2015) J Solid State Electrochem 19(11):3401–3410

    Article  CAS  Google Scholar 

  175. Yu CY, Bai Y, Yan D, Li XG, Zhang WF (2014) J Solid State Electrochem 18(7):1933–1940

    Article  CAS  Google Scholar 

  176. Li XD, Li W, Li MC, Cui P, Chen DH, Gengenbach T, Chu LH, Liu HY, Song GS (2015) J Mater Chem A 3(6):2762–2769

    Article  CAS  Google Scholar 

  177. Wang ZY, Sha JW, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2014) J Mater Chem A 2(23):8893–8901

    Article  CAS  Google Scholar 

  178. Novoselov KS, Geim AK, Morozov SV Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669

    Google Scholar 

  179. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Loh KP, Bao QL, Ang PK, Yang JX (2010) J Mater Chem 20(12):2277–2289

    Article  CAS  Google Scholar 

  182. Zheng CC, He CH, Zhang HY, Wang WG, Lei XL (2015) Ionics 21(1):51–58

    Article  CAS  Google Scholar 

  183. Yang SL, Cao CY, Huang PP, Peng L, Sun YB, Wei F, Song WG (2015) J Mater Chem A 3(16):8701–8705

    Article  CAS  Google Scholar 

  184. Fu XX, Shi L, Fan CY, Yu SQ, Qian GD, Zhiyu Wang ZY (2015) Electrochim Acta 190:25–32

    Article  CAS  Google Scholar 

  185. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF (2010) A Co(OH)2−graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun 12(4):570

    Article  CAS  Google Scholar 

  187. Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528

    Article  CAS  Google Scholar 

  188. Das B, Reddy MV, Rao GVS, Chowdari BVR (2012) Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J Mater Chem 22(34):17505

    Article  CAS  Google Scholar 

  189. Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(3):981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xie J, Cao GS, Zhao XB (2005) CoSb3-graphite composite anode material for lithium ion batteries. Rare Met 24(1):42

    CAS  Google Scholar 

  191. Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116(12):7227

    Article  CAS  Google Scholar 

  192. Wang Q, Jiao L, Han Y, Du H, Peng W, Huan Q, Song D, Si Y, Wang Y, Yuan H (2011) CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J Phys Chem C 115(16):8300

    Article  CAS  Google Scholar 

  193. Wang Z, Wang Z, Liu W, Xiao W, Lou XW (2013) Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ Sci 6(1):87

    Article  CAS  Google Scholar 

  194. Chen X, Cheng M, Chen D, Wang R (2016) Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces 8(6):3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu J, Liu WW, Wu YX, Wei TC, Geng D, Mei J, Liu H, Lau WM, Liu LM (2016) Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1−x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors. Electrochim Acta 203:21

    Article  CAS  Google Scholar 

  196. Su X, Xu Y, Liu J, Wang R (2015) Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. Cryst Eng Commun 17(26):4859

    Google Scholar 

  197. Lu A, Zhang X, Chen Y, Xie Q, Qi Q, Ma Y, Peng DL (2015) Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources 295:329

    Article  CAS  Google Scholar 

  198. Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2(1):49

    Article  CAS  Google Scholar 

  199. Li Z, Xue H, Wang J, Tang Y, Lee CS, Yang S (2015) Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem 2(11):1682

    Article  CAS  Google Scholar 

  200. Yang T, Zhang H, Luo Y, Mei L, Guo D, Li Q, Wang T (2015) Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries. Electrochim Acta 158:327

    Article  CAS  Google Scholar 

  201. Zou R, Zhang Z, Yuen MF, Sun M, Hu J, Lee CS, Zhang W (2015) Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater 7(6):e195

    Article  CAS  Google Scholar 

  202. Wu J, Guo P, Mi R, Liu X, Zhang H, Mei J, Liu H, Lau WM, Liu LM (2015) Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J Mater Chem A 3(29):15331

    Article  CAS  Google Scholar 

  203. Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100

    Article  CAS  Google Scholar 

  204. Huang XK, Cui SM, Chang JB, Hallac PB, Fell CR, Luo YT, Metz B, Jiang JW, Hurley PT, Chen JH (2015) A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew Chem Int Edit 54:1490–1493

    Article  CAS  Google Scholar 

  205. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liao L, Zhu J, Bian X, Zhu L, Scanlon MD, Girault HH, Liu B (2013) MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 23:5326–5333

    Article  CAS  Google Scholar 

  207. Hou HS, Tang XN, Guo MQ, Shi YQ, Dou P, Xu XH (2014) Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Mater Lett 128:408–411

    Article  CAS  Google Scholar 

  208. Li QY, Pan QC, Yang GH, Lin XL, Yan ZX, Wang HQ, Huang YG (2015) Synthesis of Sn/MoS2/C composites as high-performance anodes for lithium-ion batteries. J Chem Mater A 3:20375–20381

    Article  CAS  Google Scholar 

  209. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  211. Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J (2014) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G (2014) Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 6:13236–13241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Su D, Dou SX, Wang GX (2015) Bismuth: a new anode for the Na-ion battery. Nano Energy 12:88–95

    Article  CAS  Google Scholar 

  215. Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chemistry 22:2333–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Crosnier O, Devaux X, Brousse T, Fragnaud P, Schleich DM (2001) Influence of particle size and matrix in “metal” anodes for Li-ion cells. J Power Sources 97:188–190

    Article  Google Scholar 

  217. Beck FR, Epur R, Hong D, Manivannan A, Kumta PN (2014) Microwave derived facile approach to Sn/graphene composite anodes for lithium-ion batteries. Electrochim Acta 127:299–306

    Article  CAS  Google Scholar 

  218. Du YJ, Zhu GN, Wang K, Wang YG, Wang CX, Xia YY (2013) Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. Electrochem Commun 36:107–110

    Article  CAS  Google Scholar 

  219. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539

    Article  CAS  Google Scholar 

  220. Liu X, Du YC, Hu LY, Zhou XS, Li YF, Dai ZH, Bao JC (2015) Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance. J Phys Chem C 119:5848–5854

    Article  CAS  Google Scholar 

  221. Wang HT, He DW, Wang YS, Wu HP, Wang JG (2012) SnO2/graphene nanocomposite as an enhanced anode material for lithium ion batteries. Adv Mater Res 465:108–111

    Article  CAS  Google Scholar 

  222. Fu CJ, Li S, Wang Q (2015) High reversible capacity of nitrogen-doped graphene as an anode material for lithium-ion batteries. Adv Mater Res 1070–1072:459–464

    Google Scholar 

  223. Li XF, Geng DS, Zhang Y, Meng XB, Li RY, Sun XL (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825

    Article  CAS  Google Scholar 

  224. Liu XW, Wu Y, Yang ZZ, Pan FS, Zhong XW, Wang JQ, Gu L, Yu Y (2015) Nitrogen-doped 3d macroporous graphene frameworks as anode for high performance lithium-ion batteries. J Power Sources 293:799–805

    Article  CAS  Google Scholar 

  225. Xu Y, Zhu XS, Zhou XS, Liu X, Liu YX, Dai ZH, Bao JC (2014) Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries. J Phys Chem C 118:28502–28508

    Article  CAS  Google Scholar 

  226. Park SK, Jin AH, Yu SH, Ha J, Jang B, Bong SY, Woo S, Sung YE, Piao YZ (2013) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459

    Article  CAS  Google Scholar 

  227. Wu ZS, Ren WC, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Cai DD, Wang SQ, Lian PC, Zhu XF, Li DD, Yang WS, Wang HH (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497

    Article  CAS  Google Scholar 

  229. Li T, Li XH, Wang ZX, Guo HJ, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3:11970–11975

    Article  CAS  Google Scholar 

  230. Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54(6):1868–1874

    Article  CAS  Google Scholar 

  231. Shen L, Che Q, Li HS, Zhang XG (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637

    Article  CAS  Google Scholar 

  232. Chen YJ, Zhu J, Qu BH, Graphene ZX (2014) Improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94

    Article  CAS  Google Scholar 

  233. Ju ZC, Ma GY, Zhao YL, Xing Z, Qiang YH, Qian YT (2015) A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for Li-ion batteries. Part Part Syst Charact 32(11):1012–1019

    Article  CAS  Google Scholar 

  234. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39(28):15627–15638

    Article  CAS  Google Scholar 

  235. Yu XY, Yao XZ, Luo T, Jia Y, Liu JH, Huang XJ (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6(5):3689–3695

    Article  CAS  PubMed  Google Scholar 

  236. Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng HH (2013) Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. RSC Adv 3:5310–5313

    Article  CAS  Google Scholar 

  237. Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533

    Article  CAS  Google Scholar 

  238. Zhong Y, Zhang Y, Cai M, Balogh MP, Li R, Sun X (2013) Core-shell heterostructures of SnM (M = (Fe, Ni, and Cr) or Cu) alloy nanowires@CNTs on metallic substrates. Appl Surf Sci 270:722–727

    Article  CAS  Google Scholar 

  239. Li X, Zhong Y, Cai M, Balogh MP, Wang D, Zhang Y, Li R, Sun X (2013) Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochim Acta 89:387–393

    Article  CAS  Google Scholar 

  240. Choi NS, Lee YM, Park JH, Park JK (2003) Interfacial enhancement between lithium electrode and polymer electrolytes. J Power Sources 119:610–616

    Article  CAS  Google Scholar 

  241. Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 98:52–57. https://doi.org/10.1016/S0378-7753(01)00505-5

    Article  Google Scholar 

  242. Zhuang GV, Xu K, Jow TR, Ross PN (2004) Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochem Solid State Lett 7:A224. https://doi.org/10.1149/1.1756855

    Article  CAS  Google Scholar 

  243. Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion 170:83–91. https://doi.org/10.1016/S0167-2738(03)00107-3

    Article  CAS  Google Scholar 

  244. Buqa H, Würsig A, Vetter J, Spahr ME, Krumeich F, Novák P (2006) SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J Power Sources 153(2):385–390. https://doi.org/10.1016/j.jpowsour.2005.05.036

    Article  CAS  Google Scholar 

  245. Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K (2007) How dynamic is the SEI? J Power Sources 174:970–975. https://doi.org/10.1016/j.jpowsour.2007.06.050

    Article  CAS  Google Scholar 

  246. Leroy S, Blanchard F, Dedryvère R, Martinez H, Carré B, Lemordant D et al (2005) Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal 37:773–781. https://doi.org/10.1002/sia.2072

    Article  CAS  Google Scholar 

  247. Xiao A, Yang L, Lucht BL, Kang S-H, Abraham DP (2009) Examining the solid electrolyte interphase on binder-free graphite electrodes. J Electrochem Soc 156:A318–A327. https://doi.org/10.1149/1.3078020

    Article  CAS  Google Scholar 

  248. Hirasawa KA, Sato T, Asahina H, Yamaguchi S, Mori S (1997) In situ electrochemical atomic force microscope study on graphite electrodes. J Electrochem Soc 144:L81–L84. https://doi.org/10.1149/1.1837560

    Article  CAS  Google Scholar 

  249. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443. https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  CAS  Google Scholar 

  250. He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C et al (2012) Gassing in Li(4)Ti(5)O(12)-based batteries and its remedy. Nat Sci Rep 2:913. https://doi.org/10.1038/srep00913

    Article  CAS  Google Scholar 

  251. Zhou Y, Guo H, Yong Y, Wang Z, Li X, Zhou R (2017) Introducing reduced graphene oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries. Mater Lett 195:164–167

    Article  CAS  Google Scholar 

  252. Yang J, Wang BF, Wang K, Liu Y, Xie JY, Wen ZS (2003) Si/C composites for high capacity lithium storage materials. Electrochem Solid State Lett 6:A154–A156

    Article  CAS  Google Scholar 

  253. Lee HY, Lee SM (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6:465–469

    Article  CAS  Google Scholar 

  254. Wang J, Liu Z, Yan G, Li H, Peng W, Li X, Song L, Shih K (2016) Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability. J Power Sources 329:553–557

    Article  CAS  Google Scholar 

  255. Liu YJ, Lv J, Fei Y, Huo XD, Zhu YZ (2013) Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4. Ionics 19:1241–1246

    Article  CAS  Google Scholar 

  256. Wang RH, Li XH, Wang ZX, Guo HJ, Hou T, Yan GC, Huang B (2015) Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode. J Alloys Compd 618:349–356

    Article  CAS  Google Scholar 

  257. Wang RH, Li XH, Wang ZX, Guo HJ, Wang JX, Hou T (2015) Impacts of vinyl ethylene carbonate and vinylene carbonate on lithium manganese oxide spinel cathode at elevated temperature. J Alloys Compd 632:435–444

    Article  CAS  Google Scholar 

  258. Xu C, Lindgren F, Philippe B, Gorgoi M, Bjorefors F, Edstrom K, Gustafsson T (2015) Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem Mater 27:2591–2599

    Article  CAS  Google Scholar 

  259. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412

    Article  CAS  Google Scholar 

  260. Zhao M, Zuo X, Ma X, Xiao X, Yu L, Nan J (2016) Diphenyl disulfide as a new bifunctional film-forming additive for high-voltage LiCoO2/graphite battery charged to 4.4 V. J Power Sources 323:29–36. https://doi.org/10.1016/j.jpowsour.2016.05.052

    Article  CAS  Google Scholar 

  261. Wagner R, Brox S, Kasnatscheew J, Gallus DR, Amereller M, Cekic-Laskovic I, Winter M (2014) Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries. Electrochem Commun 40:80–83. https://doi.org/10.1016/j.elecom.2014.01.004

    Article  CAS  Google Scholar 

  262. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140. https://doi.org/10.1016/j.nanoen.2017.02.037

    Article  CAS  Google Scholar 

  263. Jurng S et al (2016) Low-temperature characteristics and film-forming mechanism of elemental sulfur additive on graphite negative electrode. J Electrochem Soc 163:A223–A228

    Article  CAS  Google Scholar 

  264. Abe K, Yoshitake H, Kitakura T, Hattori T, Wang H, Yoshio M (2004) Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim Acta 49(26):4613–4622. https://doi.org/10.1016/j.electacta.2004.05.016

    Article  CAS  Google Scholar 

  265. Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114(1):88–95. https://doi.org/10.1016/S0378-7753(02)00533-5

    Article  CAS  Google Scholar 

  266. Zhang XW, Patil PK, Wang C, Appleby AJ, Little FE, Cocke DL (2004) Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J Power Sources 125(2):206–213. https://doi.org/10.1016/j.jpowsour.2003.07.019

    Article  CAS  Google Scholar 

  267. Chu YQ, Fu ZW, Qin QZ (2004) Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim Acta 49(27):4915–4921. https://doi.org/10.1016/j.electacta.2004.06.012

    Article  CAS  Google Scholar 

  268. Choi WC, Byun D, Lee JK, Cho B (2004) Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries. Electrochim Acta 50(2–3):523–529. https://doi.org/10.1016/j.electacta.2003.12.070

    Article  CAS  Google Scholar 

  269. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Ding S, Luan D, Boey FYC, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157

    Article  CAS  Google Scholar 

  273. Chen W, Ghosh D, Chen S (2008) Large-scale electrochemical synthesis of SnO2 nanoparticles. J Mater Sci 43:5291–5299

    Article  CAS  Google Scholar 

  274. Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed 50:6346–6350

    Article  CAS  Google Scholar 

  275. Leontyev I, Kuriganova A, Kudryavtsev Yu, Dkhil B, Smirnova N (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal A 431:120–125

    Article  CAS  Google Scholar 

  276. Smirnova NV, Kuriganova AB, Leontyeva DV, Leontyev IN, Mikheikin AS (2013) Structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262

    Article  CAS  Google Scholar 

  277. Leontyeva DV, Leontyev IN, Avramenko MV, Yuzyuk YuI, Kukushkina YuA, Smirnova NV (2013) Electrochemical dispersion as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application. Electrochim Acta 114:356–362

    Article  CAS  Google Scholar 

  278. Smart MC, Ratnakumar BV, Surampudi S (1999) J Electrochem Soc 146:486

    Article  CAS  Google Scholar 

  279. Huang CK, Sakamoto JS, Wolfenstine J, Surampudi S (2000) J Electrochem Soc 147:2893

    Article  CAS  Google Scholar 

  280. Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) J Power Sources 119–121:943

    Article  CAS  Google Scholar 

  281. Zhang SS (2006) J Power Sources 162:1379

    Article  CAS  Google Scholar 

  282. Herreyre S, Huchet O, Barusseau S, Perton F, Bodet JM, Biensan P (2001) J Power Sources 97–98:576

    Article  Google Scholar 

  283. Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hu J, Cheung I (2003) J Power Sources 119–121:359

    Article  CAS  Google Scholar 

  284. Smith KA, Smart MC, Prakash GKS, Ratnakumar BV (2008) ECS Trans 11:91

    Article  CAS  Google Scholar 

  285. Smart MC, Whitacre JF, Ratnakumar BV, Amine K (2007) J Power Sources 168:501

    Article  CAS  Google Scholar 

  286. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67

    Article  CAS  Google Scholar 

  287. Aurbach D, Zaban A, Gofer Y, Ely YE, Weissman I, Chusid O, Abramson O (1995) J Power Sources 54:76

    Article  CAS  Google Scholar 

  288. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid B, Markovsky M, Levi E, Levi A, Schechter E, Granot Y (1997) J Power Sources 68:91

    Article  CAS  Google Scholar 

  289. Peled E, Golodnitsky D, Menachem C, BarTow D (1998) J Electrochem Soc 145:3482

    Article  CAS  Google Scholar 

  290. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423

    Article  CAS  Google Scholar 

  291. Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z (2005) J Electrochem Soc 152:A2046

    Article  CAS  Google Scholar 

  292. Winter BM, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  293. Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5(5):6895–6899

    Article  CAS  Google Scholar 

  294. Doh CH, Veluchamy A, Lee DJ, Lee JH, Jin BS, Moon SI, Park CW, Kim DW (2010) Comparative study on performances of composite anodes of SiO, Si and Graphite for lithium rechargeable batteries. Bull Korean Chem Soc 31(5):1257–1261

    Article  CAS  Google Scholar 

  295. Seong IW, Kim KT, Yoon WY (2009) Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J Power Sources 189(1):511–514

    Article  CAS  Google Scholar 

  296. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568–1574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878

    Article  CAS  Google Scholar 

  298. Gao P, Yang J (2011) Si-based composite anode materials for Li-ion batteries. Prog Chem 23(0203):264–274

    CAS  Google Scholar 

  299. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

  300. Szczech JR, Jin S (2011) Energy Environ Sci 4:56

    Article  CAS  Google Scholar 

  301. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217

    Article  CAS  Google Scholar 

  302. Guo S, Li H, Bai H, Tao Z, Chen J (2014) Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J Power Sources 248:1141–1148

    Article  CAS  Google Scholar 

  303. Nishide H, Oyaizu K (2008) Toward flexible batteries. Science (New York, NY) 319(5864):737–738

    Article  CAS  Google Scholar 

  304. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science (New York, NY) 327(5973):1603–1607

    Article  CAS  Google Scholar 

  305. Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem Soc Interface 17(1):44–48

    CAS  Google Scholar 

  306. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  307. Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22(8):2474–2480

    Article  CAS  Google Scholar 

  308. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Tu J, Hu L, Wang W, Hou J, Zhu H, Jiao S (2013) In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J Electrochem Soc 160(10):A1916–A1921

    Article  CAS  Google Scholar 

  310. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  311. Li CM, Zhang RY, Li WS, Zhao LZ, Hu SJ, Rao MM, Xu JX (2007) Ultrasonic-electrodeposited Sn-CNTs composite used as anode material for lithium ion battery. Trans Nonferr Met Soc China 17:s934–s936

    Article  Google Scholar 

  312. Zhang L, Xiang H, Li Z, Wang H (2012) Porous Li3V2(PO4)3/C cathode with extremely high-rate capacity prepared by a sol–gel-combustion method for fast charging and discharging. J Power Sources 203:121–125

    Article  CAS  Google Scholar 

  313. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840

    Article  CAS  Google Scholar 

  314. Wu D, Cheng Y (2012) Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries. Ionics 19:395–399

    Article  CAS  Google Scholar 

  315. Wang L, Yang C, Dou S, Wang S, Zhang J, Gao X, Ma J, Yu Y (2016) Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim Acta 219:592–603

    Article  CAS  Google Scholar 

  316. Wu Y, Wen Z, Li J (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater 23:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Wu Y, Wen Z, Feng H, Li J (2012) Hollow porous LiMn2O4 microcubes as rechargeable lithium battery cathode with high electrochemical performance. Small 8:858–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Wang H, Liang Q, Wang W, An Y, Li J, Guo L (2011) Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst Growth Des 11:2942–2947

    Article  CAS  Google Scholar 

  319. Zhou W, Lin L, Wang W, Zhang L, Wu Q, Li J, Guo L (2011) Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J Phys Chem C 115:7126–7133

    Article  CAS  Google Scholar 

  320. Cao K, Jiao L, Xu H, Liu H, Kang H, Zhao Y, Liu Y, Wang Y, Yuan H (2016) Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv Sci (Weinh) 3:1500185

    Article  CAS  Google Scholar 

  321. Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H (2015) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv Energy Mater 5:1401421

    Article  CAS  Google Scholar 

  322. Zhang L, Zhang Y, Yuan X (2014) Enhanced high-temperature performances of LiMn2O4 cathode by LiMnPO4 coating. Ionics 21:37–41

    Article  CAS  Google Scholar 

  323. Li X, Yang R, Cheng B, Hao Q, Xu H, Yang J, Qian Y (2012) Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 C. Mater Lett 66:168–171

    Article  CAS  Google Scholar 

  324. Yuan G, Bai J, Doan TNL, Chen P (2014) Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater Lett 137:311–314

    Article  CAS  Google Scholar 

  325. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:1159–1162

    Article  CAS  Google Scholar 

  326. Tang D, Yi R, Gordin ML, Melnyk M, Dai F, Chen S, Song J, Wang D (2014) Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. J Mater Chem A 2:10375–10378

    Article  CAS  Google Scholar 

  327. Zhang J, Zhang J, Peng Z, Cai W, Yu L, Wu Z, Zhang Z (2014) Outstanding rate capability and long cycle stability induced by homogeneous distribution of nitrogen doped carbon and titanium nitride on the surface and in the bulk of spinel lithium titanate. Electrochim Acta 132:230–238

    Article  CAS  Google Scholar 

  328. Bünting A, Uhlenbruck S, Dellen C, Finsterbusch M, Tsai CL, Sebold D, Buchkremer HP, Vaßen R (2015) Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films. J Power Sources 281:326–333

    Article  CAS  Google Scholar 

  329. Balogun M-S, Li C, Zeng Y, Yu M, Wu Q, Wu M, Lu X, Tong Y (2014) Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J Power Sources 272:946–953

    Article  CAS  Google Scholar 

  330. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… A review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922

    Article  CAS  Google Scholar 

  331. Song J, Shin DW, Lu YH et al (2012) Role of oxygen vacancies on the performance of Li[Ni0.5−xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101

    Google Scholar 

  332. Kawai H, Nagata M, Tukamoto H, West AR (1998) A new lithium cathode LiCoMnO4: toward practical 5 V lithium batteries. Electrochem Solid State Lett 1:212

    Article  CAS  Google Scholar 

  333. Dimesso L, Forster C, Jaegermann W et al (2012) Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41:5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Yang Y, Zheng G, Misra S et al (2012) High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134:15387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Wang H, Yang Y, Liang Y et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193

    Article  CAS  Google Scholar 

  339. Hu Y-Y, Liu Z, Nam K-W et al (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336

    Article  CAS  Google Scholar 

  342. Park M-S, Kang Y-M, Wang G-X et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455

    Article  CAS  Google Scholar 

  343. Chen XT, Wang KX, Zhai YB et al (2014) A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans 43:3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Liu L, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11

    Article  CAS  Google Scholar 

  345. Naskar AK, Bi Z, Li Y et al (2014) Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Adv 4:38213

    Article  CAS  Google Scholar 

  346. Li Y, Adams RA, Arora A et al (2017) Sustainable potassium-ion battery anodes derived from waste-tire rubber. J Electrochem Soc 164:A1234

    Article  CAS  Google Scholar 

  347. Li Y, Paranthaman MP, Akato K et al (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sour 316:232

    Article  CAS  Google Scholar 

  348. Bradford PD et al (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985

    Article  CAS  Google Scholar 

  349. Zhang L et al (2015) Strong and conductive dry carbon nanotube films by microcombing. Small 11:3830–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Zhang X et al (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Wang X et al (2011) Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol 71:1677–1683

    Article  CAS  Google Scholar 

  352. Wang X et al (2012) Ultrastrong, stiff and multifunctional carbon nanotube composites. Mater Res Lett 1:1–7

    Google Scholar 

  353. Fu K et al (2013) Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 25:5109–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Faraji S et al (2014) Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon N Y 79:113–122

    Article  CAS  Google Scholar 

  355. Dufficy MK, Khan SA, Fedkiw PS (2015) Galactomannan binding agents for silicon anodes in Li-ion batteries. J Mater Chem A 3:12023–12030

    Article  CAS  Google Scholar 

  356. Cuesta N, Ramos A, Cameán I, Antuña C, García AB (2015) Hydrocolloids as binders for graphite anodes of lithium-ion batteries. Electrochim Acta 155:140–147

    Article  CAS  Google Scholar 

  357. Liu J et al (2015) A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605

    Article  CAS  Google Scholar 

  358. Sudhakar YN, Selvakumar M, Bhat DK (2014) Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater Sci Eng B 180:12–19

    Article  CAS  Google Scholar 

  359. Wang J, Chen Y, Qi L (2011) Open Mater Sci J 5:228

    Article  CAS  Google Scholar 

  360. Kasavajjula U, Wang CS, Appleby AJ (2007) J Power Sources 163:1003

    Article  CAS  Google Scholar 

  361. Chen LB, Xie XH, Wang BF, Wang K, Xie JY (2006) Mater Sci Eng B 131:186

    Article  CAS  Google Scholar 

  362. Ng SH, Wang J, Konstantinov K, Wexler D, Chew SY, Guo ZP, Liu HK (2007) J Power Sources 174:823

    Article  CAS  Google Scholar 

  363. Amine K, Wang QZ, Vissers DR, Zhang ZC, Rossi NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433

    Article  CAS  Google Scholar 

  364. Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272

    Article  CAS  Google Scholar 

  365. Zhang LZ, Zhang ZC, Harring S, Straughan M, Butorac R, Chen ZH, Lyons L, Amine K, West R (2008) Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. J Mater Chem 18:3713–3717

    Article  CAS  Google Scholar 

  366. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Walkowiak M, Waszak D, Schroeder G, Gierczyk B (2008) Polyether-functionalized disiloxanes as new film-forming electrolyte additive for Li-ion cells with graphitic anodes. Electrochem Commun 10:1676–1679

    Article  CAS  Google Scholar 

  368. Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane—a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527

    Article  CAS  Google Scholar 

  369. Xia Q, Wang B, Wu YP, Luo HJ, Zhao SY, van Ree T (2008) Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J Power Sources 180:602–606

    Article  CAS  Google Scholar 

  370. Qin XY, Wang JL, Zhang LZ (2012) Progress of organosilicon based electrolytes for lithium-ion batteries. Prog Chem 24(5):155–167

    Google Scholar 

  371. Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z (2003) Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem Solid-State Lett 6:A13–A15

    Article  CAS  Google Scholar 

  372. Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z (2008) Interfacial reactions between graphite electrodes and propylene carbonate-based solution: electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J Power Sources 175:540–546

    Article  CAS  Google Scholar 

  373. Takeuchi S, Miyazaki K, Sagane F, Fukutsuka T, Jeong SK, Abe T (2011) Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions. Electrochim Acta 56:10450–10453

    Article  CAS  Google Scholar 

  374. Takeuchi S, Fukutsuka T, Miyazaki K, Abe T (2013) Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt. J Power Sources 238:65–68

    Article  CAS  Google Scholar 

  375. Henderson WA (2006) Glyme-lithium salt phase behavior. J Phys Chem B 110:13177–13183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Seo DM, Borodin O, Han SD, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association II acetonitrile-lithium salt mixtures: highly dissociated salts. J Electrochem Soc 159:A1489–A1500

    Article  CAS  Google Scholar 

  377. Yamada Y, Yaegashi M, Abe T, Yamada A (2013) A superconcentrated ether electrolyte for fast-charging li-ion batteries. Chem Commun 49:11194–11196

    Article  CAS  Google Scholar 

  378. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Song HY, Fukutsuka T, Miyazaki K, Abe T (in press) suppression of co-intercalation reaction of propylene carbonate and lithium ion into graphite negative electrode by addition of diglyme. J Electrochem Soc

    Google Scholar 

  380. Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW (2011) Nano Lett 11:3312–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Proc Natl Acad Sci USA 109:4080–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Wu H, Cui Y (2012) Nano Today 7:414–429

    Article  CAS  Google Scholar 

  383. Yi R, Dai F, Gordin ML, Chen S, Wang D (2013) Adv Energy Mater 3:295–300

    Article  CAS  Google Scholar 

  384. Abraham KM (2015) Prospects and limits of energy storage in batteries. J Phys Chem Lett 6:830–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229

    Article  CAS  Google Scholar 

  386. Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high capacity anode materials for lithium-ion batteries. J Phys Chem C 113:20504–20508

    Article  CAS  Google Scholar 

  387. Wen Z, Cui Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J (2012) Binding Sn based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J Mater Chem 22:3300–3306

    Article  CAS  Google Scholar 

  388. Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906

    Article  CAS  Google Scholar 

  389. Wang J, Song W-L, Wang Z, Fan L-Z, Zhang Y (2015) Facile fabrication of binder free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithium-ion batteries. Electrochim Acta 153:468–475

    Article  CAS  Google Scholar 

  390. Li X, Li X, Fan L, Yu Z, Yan B, Xiong D, Song X, Li S, Adair KR, Li D, Sun X (2017) Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries. Appl Surf Sci 412:170–176

    Article  CAS  Google Scholar 

  391. Guo ZG, Cheng JK, Hu ZG, Zhang M, Xu Q, Kang ZX, Zhao D (2014) Metal-organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv 4:34221–34225

    Article  CAS  Google Scholar 

  392. DeKrafft KE, Wang C, Lin WB (2012) Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Liu JJ, Yang Y, Zhu WW, Yi X, Dong ZL, Xu XN, Chen MW, Yang K, Lu G, Jiang LX, Liu Z (2016) Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Meng WJ, Chen W, Zhao L, Huang Y, Zhu MS, Huang Y, Fu YQ, Geng FX, Yu J, Chen XF, Zhi CY (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140

    Article  CAS  Google Scholar 

  395. Li GC, Liu PF, Liu R, Liu M, Tao K, Zhu SR, Wu MK, Yi FY, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45:13311–13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Yue HY, Shi ZP, Wang QX, Cao ZX, Dong HY, Qiao Y, Yin YH, Yang ST (2014) MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:17067–17074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Guo WX, Sun WW, Lv LP, Kong SF, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11:4198–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Wang W, Yang Y, Yang SJ, Guo ZP, Feng CQ, Tang XC (2015) Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim Acta 155:297–304

    Article  CAS  Google Scholar 

  399. Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69

    Article  CAS  Google Scholar 

  400. Zhang B, Zheng QB, Huang ZD, Oh SW, Kim JK (2011) SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon 49:4524–4534

    Article  CAS  Google Scholar 

  401. Koninck MD, Poirier SC, Marsan B (2006) J Electrochem Soc 153:A2103–A2110

    Article  CAS  Google Scholar 

  402. Rosa-Toro AL, Berenguer R, Quijada C, Montilla F, Morallon E, Vazquez JL (2006) J Phys Chem B 110:24021–24029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  403. Feng Y, Liu JH, Wu DL, Zhou ZY, Deng Y, Zhang T, Shih K (2015) Chem Eng J 280:514–524

    Article  CAS  Google Scholar 

  404. Shi YQ, Yu B, Zhou KQ, Yuen RKK, Gui Z, Hu Y, Jiang SH (2015) J Hazard Mater 293:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Yunjian L, Xinhai L, Huajun G, Zhixing W, Qiyang H, Wenjie P, Yong Y (2009) Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J Power Sources 189:721–725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Writer, B. (2019). Anode Materials, SEI, Carbon, Graphite, Conductivity, Graphene, Reversible, Formation. In: Lithium-Ion Batteries. Springer, Cham. https://doi.org/10.1007/978-3-030-16800-1_1

Download citation

Publish with us

Policies and ethics