Skip to main content

Fungal Decomposers in Freshwater Environments

  • Chapter
  • First Online:

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 7))

Abstract

Streams, rivers, and freshwater marshes often depend on plant litter as a source of carbon, nutrients, and energy that drive ecosystem processes. Decomposition of this organic matter, such as leaves, wood, or emergent macrophytes, is mediated mostly by fungi, whereas the role of bacteria is minor. Fungal colonization leads to enzymatic breakdown of major plant polymers and fungal biomass accrual (often around 10% of total detrital dry mass), which makes decaying plant material more palatable to detritivorous invertebrates. Representatives of almost all major groups of fungi can be isolated from decaying plant litter collected in freshwater ecosystems or detected using molecular techniques; however, ascomycetes, including their asexual stages (e.g., aquatic hyphomycetes in streams), predominate. In recent years, utilization of radioisotopic approaches (e.g., acetate incorporation into ergosterol) to estimate fungal growth rates and production has facilitated the construction of partial carbon budgets for decaying plant litter that illustrate the importance of fungal decomposers in both lotic and lentic systems. For example, some estimates suggest that 23–60% of leaf litter carbon loss in streams can be explained by fungal assimilation (production plus respiration), which does not include fungal-mediated losses as fine particulate or dissolved organic carbon. Estimates of fungal contribution to plant carbon loss can be even higher (47–65%) in standing-dead emergent macrophyte systems in wetlands. The effects of environmental variables on fungal activity and plant litter decomposition in freshwaters, including inorganic nutrient availability and eutrophication, have also received considerable attention in the recent years. Molecular approaches are now becoming increasingly important in both streams and wetlands to assess the effects of environmental variables on litter-associated fungal assemblages. However, there are considerable differences in fungal dynamics and assemblages between streams and freshwater wetlands, which are discussed here in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah SK, Taj-Aldeen SJ (1989) Extracellular enzymatic activity of aquatic and aero-aquatic conidial fungi. Hydrobiologia 174:217–223

    Article  CAS  Google Scholar 

  • Apinis AE, Taligoola HK (1974) Biodegradation of Phragmites communis Trin. by fungi. In: Kilbertus G, Reisinger O, Concela Da Fonseca JA (eds) Biodegradation et humification. Sarreguemines, Pierron, pp 24–32

    Google Scholar 

  • Apinis AE, Chesters CGC, Taligoola HK (1975) Microfungi colonizing nodes and internodes of aerial standing dead culms of Phragmites communis Trin. Nova Hedwigia 26:495–507

    Google Scholar 

  • Asaeda T, Nam L, Hietz P et al (2002) Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquat Bot 73:223–239

    Article  Google Scholar 

  • Baldy V, Gessner MO (1997) Towards a budget of leaf litter decomposition in a first-order woodland stream. C R Acad Sci Paris, Ser III 320:747–758

    Article  Google Scholar 

  • Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Article  Google Scholar 

  • Baldy V, Chauvet E, Charcosset JY et al (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36

    Article  Google Scholar 

  • Baldy V, Gobert V, Guerold F et al (2007) Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshw Biol 52:1322–1335

    Article  CAS  Google Scholar 

  • Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 39–59

    Chapter  Google Scholar 

  • Bärlocher F, Biddiscombe N (1996) Geratology and decomposition of Typha latifolia and Lythrum salicaria in a freshwater marsh. Arch Hydrobiol 136:309–325

    Google Scholar 

  • Baschien C, Tsui C, Gulis V et al (2013) The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol 117:660–672

    Article  PubMed  Google Scholar 

  • Battin T, Sloan W, Kjelleberg S et al (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  CAS  PubMed  Google Scholar 

  • Batzer DP, Sharitz RR (2006) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley

    Google Scholar 

  • Benstead JP, Rosemond AD, Cross WF et al (2009) Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90:2556–2566

    Article  PubMed  Google Scholar 

  • Blagodatsky S, Blagodatskaya E, Yuyukina T et al (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42:1275–1283

    Article  CAS  Google Scholar 

  • Bucher VVC, Pointing SB, Hyde KD et al (2004) Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Microb Ecol 48:331–337

    Article  CAS  PubMed  Google Scholar 

  • Buesing N, Gessner MO (2006) Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh. Appl Environ Microbiol 72:596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buesing N, Filippini M, Burgmann H et al (2009) Microbial communities in contrasting freshwater marsh microhabitats. FEMS Microbiol Ecol 69:84–97

    Article  CAS  PubMed  Google Scholar 

  • Carter MD, Suberkropp K (2004) Respiration and annual fungal production associated with decomposing leaf litter in two streams. Freshw Biol 49:1112–1122

    Article  Google Scholar 

  • Cheever BM, Kratzer EB, Webster JR (2012) Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshw Sci 31:133–147

    Article  Google Scholar 

  • Cheever BM, Webster JR, Bilger EE et al (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614–1625

    Article  CAS  PubMed  Google Scholar 

  • Christensen J, Crumpton W, van der Valk A (2009) Estimating the breakdown and accumulation of emergent macrophyte litter: a mass-balance approach. Wetlands 29:204–214

    Article  Google Scholar 

  • Chung N, Suberkropp K (2009) Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae). Freshw Biol 54:2212–2224

    Article  CAS  Google Scholar 

  • Clemmensen K, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD et al (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:2563–2575

    Article  PubMed  Google Scholar 

  • Danger M, Chauvet E (2013) Elemental composition and degree of homeostasis of fungi: are aquatic hyphomycetes more like metazoans, bacteria or plants? Fungal Ecol 6:453–457

    Article  Google Scholar 

  • Danger M, Cornut J, Chauvet E et al (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613

    Article  PubMed  Google Scholar 

  • Descals E (2005) Diagnostic characters of propagules of Ingoldian fungi. Mycol Res 109:545–555

    Article  PubMed  Google Scholar 

  • Diez J, Elosegi A, Chauvet E et al (2002) Breakdown of wood in the Aguera stream. Freshw Biol 47:2205–2215

    Article  Google Scholar 

  • Duarte S, Pascoal C, Alves A et al (2010) Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiol Res 165:351–362

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Seena S, Barlocher F et al (2013) A decade’s perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biol Rev 27:19–24

    Article  Google Scholar 

  • Fennessy M, Rokosch A, Mack J (2008) Patterns of plant decomposition and nutrient cycling in natural and created wetlands. Wetlands 28:300–310

    Article  Google Scholar 

  • Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Chang Biol 17:551–564

    Article  Google Scholar 

  • Ferreira V, Elosegi A, Gulis V et al (2006a) Eucalyptus plantations affect fungal communities associated with leaf-litter decomposition in Iberian streams. Arch Hydrobiol 166:467–490

    Article  CAS  Google Scholar 

  • Ferreira V, Gulis V, Graça MAS (2006b) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729

    Article  PubMed  Google Scholar 

  • Ferreira V, Gulis V, Pascoal C et al (2014) Stream pollution and fungi. In: Jones EBG, Hyde KD, Pang KL (eds) Freshwater fungi and fungal-like organisms. De Gruyter, Berlin, pp 389–412

    Google Scholar 

  • Ferreira V, Castagneyrol B, Koricheva J et al (2015) A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol Rev 90:669–688

    Article  PubMed  Google Scholar 

  • Findlay S (2010) Stream microbial ecology. J N Am Benthol Soc 29:170–181

    Article  Google Scholar 

  • Findlay S, Howe K, Austin H (1990) Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71:288–295

    Article  Google Scholar 

  • Findlay S, Tank J, Dye S et al (2002a) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66

    Article  CAS  PubMed  Google Scholar 

  • Findlay SEG, Dye S, Kuehn KA (2002b) Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22:616–625

    Article  Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439

    Article  Google Scholar 

  • Francoeur SN, Schaecher M, Neely RK et al (2006) Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying Typha litter. Microb Ecol 52:662–669

    Article  PubMed  Google Scholar 

  • Gessner M (2001) Mass loss, fungal colonisation and nutrient dynamics of Phragmites australis leaves during senescence and early aerial decay. Aquat Bot 69:325–339

    Article  Google Scholar 

  • Gessner MO (2005) Ergosterol as a measure of fungal biomass. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 189–196

    Chapter  Google Scholar 

  • Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817

    Article  Google Scholar 

  • Gessner MO, Chauvet E (1997) Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol Oceanogr 42:496–595

    Article  CAS  Google Scholar 

  • Gessner MO, Van Ryckegem G (2003) Water fungi as decomposers in freshwater ecosystems. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York. https://doi.org/10.1002/0471263397.env314

    Chapter  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA et al (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP, Druzhinina IS (eds) The Mycota, vol IV. Environmental and microbial relationship. Springer, Berlin, pp 301–324

    Google Scholar 

  • Gingerich R, Anderson J (2011) Litter decomposition in created and reference wetlands in West Virginia, USA. Wetl Ecol Manag 19:449–458

    Article  Google Scholar 

  • Grimmett I, Shipp K, Macneil A et al (2013) Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol 6:493–500

    Article  Google Scholar 

  • Guenet B, Danger M, Abbadie L et al (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  • Gulis V (2001) Are there any substrate preferences in aquatic hyphomycetes? Mycol Res 105:1088–1093

    Article  Google Scholar 

  • Gulis V, Bärlocher F (2017) Fungi: biomass, production, and community structure. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, vol 1. Academic Press, San Diego, pp 177–192

    Chapter  Google Scholar 

  • Gulis V, Suberkropp K (2003a) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    Article  CAS  PubMed  Google Scholar 

  • Gulis V, Suberkropp K (2003b) Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat Microb Ecol 30:149–157

    Article  Google Scholar 

  • Gulis V, Suberkropp K (2003c) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Article  Google Scholar 

  • Gulis V, Suberkropp K (2004) Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport. Mycologia 96:57–65

    Article  PubMed  Google Scholar 

  • Gulis V, Rosemond AD, Suberkropp K et al (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447

    Article  Google Scholar 

  • Gulis V, Marvanová L, Descals E (2005) An illustrated key to the common temperate species of aquatic hyphomycetes. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 153–167

    Chapter  Google Scholar 

  • Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669

    Article  CAS  Google Scholar 

  • Gulis V, Suberkropp K, Rosemond AD (2008) Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl Environ Microbiol 74:1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Gulis V, Kuehn KA, Suberkropp K (2009) Fungi. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 233–243

    Chapter  Google Scholar 

  • Gulis V, Kuehn KA, Shoettle LN et al (2017) Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply. ISME J 11:2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutknecht J, Goodman R, Balser T (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  CAS  Google Scholar 

  • Hagen E, McCluney K, Wyant K et al (2012) A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121:1507–1515

    Article  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Hotchkiss E, Hall R, Baker M et al (2014) Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res-Biogeosci 119:982–995

    Article  CAS  Google Scholar 

  • Jenkins CC, Suberkropp K (1995) The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshw Biol 33:245–253

    Article  CAS  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A et al (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Kominkova D, Kuehn KA, Busing N et al (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–282

    Article  Google Scholar 

  • Kuehn KA (2008) The role of fungi in the decomposition of emergent wetland plants. In: Sridhar S, Bärlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong, pp 19–41

    Google Scholar 

  • Kuehn KA (2016) Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecol 19:135–154

    Article  Google Scholar 

  • Kuehn KA, Suberkropp K (1998a) Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus. Freshw Biol 40:717–727

    Article  Google Scholar 

  • Kuehn KA, Suberkropp K (1998b) Diel fluctuations in rates of CO2 evolution from standing dead leaf litter of the emergent macrophyte Juncus effusus. Aquat Microb Ecol 14:171–182

    Article  Google Scholar 

  • Kuehn KA, Churchill PF, Suberkropp K (1998) Osmoregulatory responses of fungi inhabiting standing litter of the freshwater emergent macrophyte Juncus effusus. Appl Environ Microbiol 64:607–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehn KA, Gessner MO, Wetzel RG et al (1999) Decomposition and CO2 evolution from standing litter of the emergent macrophyte Erianthus giganteus. Microb Ecol 38:50–57

    Article  CAS  PubMed  Google Scholar 

  • Kuehn KA, Lemke MJ, Suberkropp K et al (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 45:862–870

    Article  CAS  Google Scholar 

  • Kuehn KA, Steiner D, Gessner MO (2004) Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85:2504–2518

    Article  Google Scholar 

  • Kuehn KA, Ohsowski B, Francoeur S et al (2011) Contributions of fungi to carbon flow and nutrient cycling from standing dead Typha angustifolia leaf litter in a temperate freshwater marsh. Limnol Oceanogr 56:529–539

    Article  CAS  Google Scholar 

  • Kuehn KA, Francoeur SN, Findlay RH et al (2014) Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95:749–762

    Article  PubMed  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Manning DWP, Rosemond AD, Kominoski JS et al (2015) Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates. Ecology 96:2214–2224

    Article  PubMed  Google Scholar 

  • Manning DWP, Rosemond AD, Gulis V et al (2016) Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams. Ecol Appl 26:1745–1757

    Article  PubMed  Google Scholar 

  • Methvin BR, Suberkropp K (2003) Annual production of leaf-decaying fungi in two streams. J N Am Benthol Soc 22:554–564

    Article  Google Scholar 

  • Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:173–182

    Article  CAS  PubMed  Google Scholar 

  • Mille-Lindblom C, Fischer H, Tranvik L (2006) Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New York

    Google Scholar 

  • Moore J, Berlow E, Coleman D et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Morrissey E, Berrier D, Neubauer S et al (2014) Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry 117:473–490

    Article  CAS  Google Scholar 

  • Newell SY (2003) Fungal content and activities in standing-decaying leaf blades of plants of the Georgia Coastal Ecosystems research area. Aquat Microb Ecol 32:95–103

    Article  Google Scholar 

  • Newell SY, Fallon RD (1991) Toward a method for measuring instantaneous fungal growth rates in field samples. Ecology 72:1547–1559

    Article  Google Scholar 

  • Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newell SY, Moran MA, Wicks R et al (1995) Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater sedge. Freshw Biol 34:135–148

    Article  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Progr 3:41–49

    Article  Google Scholar 

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsowski BM (2008) Annual secondary production of fungal and bacterial decomposers associated with standing and benthic litter of the freshwater emergent macrophyte, Typha angustigolia. MS thesis, Eastern Michigan University

    Google Scholar 

  • Pascoal C, Cassio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal C, Cassio F, Marcotegui A et al (2005) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797

    Article  Google Scholar 

  • Polunin NVC (1984) The decomposition of emergent macrophytes in fresh-water. Adv Ecol Res 14:115–166

    Article  Google Scholar 

  • Poon M, Hyde K (1998) Evidence for the vertical distribution of saprophytic fungi on senescent Phragmites australis culms at Mai Po marshes, Hong Kong. Bot Mar 41:285–292

    Google Scholar 

  • Pugh GJF, Mulder JL (1971) Mycoflora associated with Typha latifolia. Trans Br Mycol Soc 57:273–282

    Article  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rier ST, Kuehn KA, Francoeur SN (2007) Algal regulation of extracellular enzyme activity in stream microbial communities associated with inert substrata and detritus. J N Am Benthol Soc 26:439–449

    Article  Google Scholar 

  • Rier S, Shirvinski J, Kinek K (2014) In situ light and phosphorus manipulations reveal potential role of biofilm algae in enhancing enzyme-mediated decomposition of organic matter in streams. Freshw Biol 59:1039–1051

    Article  CAS  Google Scholar 

  • Romani AM, Fischer H, Mille-Lindblom C et al (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  PubMed  Google Scholar 

  • Rosemond AD, Pringle CM, Ramirez A et al (2002) Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol Oceanogr 47:278–289

    Article  CAS  Google Scholar 

  • Rothman E, Bouchard V (2007) Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland. Wetlands 27:1134–1143

    Article  Google Scholar 

  • Rousk J, Baath E (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol Ecol 62:258–267

    Article  CAS  PubMed  Google Scholar 

  • Saccardo PA (1898) Sylloge fungorum omnium hucusque cognitorum 13, Index universalis. Fratres Borntrager, Lipsiae

    Google Scholar 

  • Seena S, Wynberg N, Barlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Shearer CA (1992) The role of woody debris. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 77–98

    Chapter  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563

    Article  Google Scholar 

  • Sinsabaugh RL, Findlay S (1995) Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb Ecol 30:127–141

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Ann Rev Ecol Evol Syst 43:313–343

    Article  Google Scholar 

  • Sinsabaugh RL, Belnap J, Follstad Shah JJ et al (2014) Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 121:287–304

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ, Findlay SG et al (2015) Scaling microbial biomass, metabolism and resource supply. Biogeochemistry 122:175–190

    Article  Google Scholar 

  • Spanhoff B, Gessner MO (2004) Slow initial decomposition and fungal colonization of pine branches in a nutrient-rich lowland stream. Can J Fish Aquat Sci 61:2007–2013

    Article  Google Scholar 

  • Stelzer RS, Heffernan J, Likens GE (2003) The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshw Biol 48:1925–1937

    Article  CAS  Google Scholar 

  • Su R (2014) Fungal contribution to carbon and nutrient cycling in a subtropical freshwater marsh. Ph.D. dissertation, University of Southern Mississippi

    Google Scholar 

  • Su R, Lohner RN, Kuehn KA, Sinsabaugh R et al (2007) Microbial dynamics associated with decomposing Typha angustifolia litter in two contrasting Lake Erie coastal wetlands. Aquat Microb Ecol 46:295–307

    Article  Google Scholar 

  • Su R, Kuehn KA, Phipps SW (2015) Carbon and nutrient flow into decomposer fungi during standing-dead Typha domingensis decomposition in a subtropical freshwater marsh. Freshw Biol 60:2100–2112

    Article  CAS  Google Scholar 

  • Suberkropp K (1991) Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycol Res 95:843–850

    Article  Google Scholar 

  • Suberkropp K (1992) Interactions with invertebrates. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 118–134

    Chapter  Google Scholar 

  • Suberkropp K (1995) The influence of nutrients on fungal growth, productivity, and sporulation during leaf breakdown in streams. Can J Bot 73:S1361–S1369

    Article  Google Scholar 

  • Suberkropp K (1997) Annual production of leaf-decaying fungi in a woodland stream. Freshw Biol 38:169–178

    Article  Google Scholar 

  • Suberkropp K (1998) Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycol Res 102:998–1002

    Article  CAS  Google Scholar 

  • Suberkropp K, Gessner MO (2005) Acetate incorporation into ergosterol to determine fungal growth rates and production. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Berlin, pp 197–202

    Chapter  Google Scholar 

  • Suberkropp K, Weyers H (1996) Application of fungal and bacterial production methodologies to decomposing leaves in streams. Appl Environ Microbiol 62:1610–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suberkropp K, Gessner MO, Chauvet E (1993) Comparison of ATP and ergosterol as indicators of fungal biomass associated with decomposing leaves in streams. Appl Environ Microbiol 59:3367–3372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suberkropp K, Gulis V, Rosemond AD et al (2010) Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnol Oceanogr 55:149–160

    Article  Google Scholar 

  • Tanaka Y (1991) Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiologia 220:119–129

    Article  CAS  Google Scholar 

  • Tank JL, Webster JR, Benfield EF et al (1998) Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. J N Am Benthol Soc 17:95–103

    Article  Google Scholar 

  • Tant CJ, Rosemond AD, First MR (2013) Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter. Freshw Sci 32:1111–1121

    Article  Google Scholar 

  • Tsui CKM, Hyde KD (2003) Freshwater mycology. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Van Ryckegem G, Verbeken A (2005a) Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia 80:173–197

    Article  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005b) Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. I. Leaf sheaths. Fungal Divers 19:157–187

    Google Scholar 

  • Van Ryckegem G, Verbeken A (2005c) Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. II. Stems. Fungal Divers 20:209–233

    Google Scholar 

  • Van Ryckegem G, Van Driessche G, Van Beeumen J et al (2006) The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems. Microb Ecol 52:564–574

    Article  PubMed  Google Scholar 

  • Van Ryckegem G, Gessner MO, Verbeken A (2007) Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition. Microb Ecol 53:600–611

    Article  PubMed  Google Scholar 

  • Wallander H, Ekblad A, Godbold D et al (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—a review. Soil Biol Biochem 57:1034–1047

    Article  CAS  Google Scholar 

  • Webster J (1992) Anamorph-teleomorph relationships. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 99–117

    Chapter  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Ann Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution, and ecology of conidial fungi in freshwater habitats. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol 1. Academic Press, New York, pp 295–355

    Chapter  Google Scholar 

  • Webster JR, Meyer JL (1997) Stream organic matter budgets. J N Am Benthol Soc 16:3–4

    Article  Google Scholar 

  • Weete JD, Abril M, Blackwell M (2010) Phylogentic distribution of fungal sterols. PLoS One 5:e10899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsch M, Yavitt J (2003) Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquat Bot 75:45–57

    Article  Google Scholar 

  • Weyers HS, Suberkropp K (1996) Fungal and bacterial production during the breakdown of yellow poplar leaves in two streams. J N Am Benthol Soc 15:408–420

    Article  Google Scholar 

  • Woodward G, Gessner MO, Giller P et al (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440

    Article  CAS  PubMed  Google Scholar 

  • Wurzbacher C, Bärlocher F, Grossart H (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

  • Wurzbacher C, Rösel S, Rychla A et al (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9:e94643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zare-Maivan H, Shearer CA (1988) Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi. Mycologia 80:365–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Gulis .

Editor information

Editors and Affiliations

Ethics declarations

Funding

Financial support from the National Science Foundation (DEB 0919054, DEB 1655797 to VG and DBI 0420965, DBI 0923063, DEB 0315686, DEB 1457217 to KAK) is gratefully acknowledged.

Conflict of Interest

Vladislav Gulis declares that he/she has no conflict of interest. Rong Su declares that he/she has no conflict of interest. Kevin A. Kuehn declares that he/she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gulis, V., Su, R., Kuehn, K.A. (2019). Fungal Decomposers in Freshwater Environments. In: Hurst, C. (eds) The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-16775-2_5

Download citation

Publish with us

Policies and ethics