Skip to main content

Combined Over-the-Horizon Communication Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 560))

Abstract

The chapter presents the scientific and technical principles of construction of new hybrid combined over-the-horizon communication systems with the use of reference small-sized stations of troposcatter communication, relaying intellectual aeroplatforms and artificial formations. These principles are based on the use of new technologies and software-defined and cognitive radio, cooperative relaying, machine-to-machine, effective interaction system, hardware and application protocol levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freeman, R.L.: Radio System Design for Telecommunications, 3rd edn, p. 880. Wiley, Hoboken (2007)

    Book  Google Scholar 

  2. Roda, G.: Troposcatter Radio Links. Artech House Publishers, Boston (1988)

    Google Scholar 

  3. Ilchenko, M.Y., Kravchuk, S.O.: Telecommunication Systems, p. 730. Naukova dumka, Kiev (2017)

    Google Scholar 

  4. Li, C., Chen, X., Liu, X.: Cognitive tropospheric scatter communication. IEEE Trans. Veh. Technol. 67(2), 1482–1491 (2018)

    Article  Google Scholar 

  5. Nemit, J.T.: Over the horizon communication system. US5017923A Patent Number: 5,017,923, 21 May 1991

    Google Scholar 

  6. Mu, Y., Blázquez García, R., Aguareles Palomar, J., Sun, X., García Tejero, A., Fernández González, J.M., Burgos García, M., Sierra Castañer, M.: Over-the-horizon communications system for UAVs based on intelligent antennas. In: XXXI Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2016) Madrid, Spain, pp. 1–4 (2016). http://oa.upm.es/46490/

  7. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

    Article  Google Scholar 

  8. Alsamhi, S.H., Rajput, N.S.: An intelligent HAP for broadband wireless communications: developments, QoS and applications. Int. J. Electron. Electr. Eng. 3(2), 134–143 (2015)

    Google Scholar 

  9. Flattie, A.G.: Effect of high altitude aeronautical platforms with cognitive relay for radar performance. Int. J. Sig. Process. Syst. 3(2), 159–165 (2015)

    Google Scholar 

  10. Motlagh, N.H., Taleb, T., Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016)

    Article  Google Scholar 

  11. Mehmood, Y., Gurg, C., Muehleisen, M., Timm-Giel, A.: Mobile M2M communication architectures, upcoming challenges, applications, and future Directions. EURASIP J. Wirel. Commun. Netw. (1), 1–37 (2015). https://doi.org/10.1186/s13638-015-0479-y

  12. Afanasieva, L., Minochkin, D., Kravchuk, S.: Providing telecommunication services to antarctic stations. In: Proceedings of the 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, 11–15 September 2017, pp. 1–4. IEEE Conference Publications (2017). https://doi.org/10.1109/UkrMiCo.2017.8095419. (IEEE Xplore Digital Library)

  13. Zgurovsky, M., Ilchenko, M., Kravchuk, S., Kotovskyi, V., Narytnik, T., Cybulskyi, L.: Prospects of using of aerial stratospheric telecommunication systems. In: Proceedings of the 2016 IEEE International Scientific Conference “RadioElectronics & InfoCommunications” (UkrMiCo 2016), Kyiv, Ukraine, 11–16 September 2016. IEEE Conference Publications (2016). https://doi.org/10.1109/UkrMiCo.2016.7739636. (IEEE Xplore Digital Library)

  14. Kravchuk, S., Minochkin, D., Omiotek, Z., Bainazarov, U., Weryńska-Bieniasz, R., Iskakova, A.: Cloud-based mobility management in heterogeneous wireless networks. In: Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, SPIE, Wilga, Poland, 7 August 2017, vol. 10445, p. 104451W (2017). http://dx.doi.org/10.1117/12.2280888

  15. Almási, B.: Multipath communication – a new basis for the future internet cognitive infocommunication. In: 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 2–5 December 2013, pp. 201–204 (2013). https://doi.org/10.1109/CogInfoCom.2013.6719241

  16. Garg, A., Das, S.S.: Design of troposcatter broadband link based on SCFDE. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6 (2017). https://doi.org/10.1109/ANTS.2017.8384095

  17. Li, C., Chen, X., Liu, J., Liu, Z.: One-way time transfer for large area through tropospheric scatter. In: 2017 17th IEEE International Conference on Communication Technology (ICCT), pp. 1–5 (2017). https://doi.org/10.1109/ICCT.2017.8359472

  18. Li, C., Chen, X., Xie, Z.: A closed-form expression of coherence bandwidth for troposcatter links. IEEE Commun. Lett. 22(3), 646–649 (2018). https://doi.org/10.1109/LCOMM.2017.2785850

    Article  Google Scholar 

  19. Maokai, H., Xihong, C., Tao, S., Shaoqiang, D.: New generation troposcatter communication based on OFDM modulation. In: Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009), pp. 3:164–3:167 (2009)

    Google Scholar 

  20. Xie, Z., Chen, X., Liu, X., Zhao, Y.: MMSE-NP-RISIC-based channel equalization for MIMO-SC-FDE troposcatter communication systems. Math. Prob. Eng. 1–9 (2016). http://dx.doi.org/10.1155/2016/5158406. Hindawi Publishing Corporation, ID 5158406

  21. Kravchuk, S., Kaidenko, M.: Features of creation of modem equipment for the new generation compact troposcatter stations. In: Proceedings of the International Scientific Conference “RadioElectronics & InfoCommunications” (UkrMiCo 2016), Kyiv, Ukraine, 11–16 September 2016, pp. 365–368. IEEE Conference Publications (2016). https://doi.org/10.1109/UkrMiCo.2016.7739634. (IEEE Xplore Digital Library)

  22. Kravchuk, S.O.: Principles for creating portable tropospheric radio relay stations. In: Proceedings of the 9th International Scientific Conference Modern Challenges in Telecommunications, Kyiv, Ukrane, 21–25 April 2015, pp. 254–256 (2015). (in Russian)

    Google Scholar 

  23. Kravchuk, S.O., Kaidenko, M.M.: Modem equipment for the new generation compact troposcatter stations. Inf. Telecommun. Sci. 7(1), 5–12 (2016)

    Google Scholar 

  24. Unkauf, F.: The next generation of troposcatter systems. Raytheon Technol. Today (3), 9–10 (2007)

    Google Scholar 

  25. Bastos, L., Wietgrefe, H.: Highly-deployable troposcatter systems in support of NATO expeditionary operations. In: IEEE Conference Proceedings on Military Communications Conference MILCOM, Baltimore, 7–10 November 2011

    Google Scholar 

  26. Li, L., Wu, Z.-S., Lin, L.-K., Zhang, R., Zhao, Z.-S.: Study on the prediction of troposcatter transmission loss. IEEE Trans. Antennas Propag. 64(3), 1071–1078 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yun, Z., Iskander, M.F.: Ray tracing for radio propagation modeling: principles and applications. IEEE Access 3, 1089–1100 (2015)

    Article  Google Scholar 

  28. Nafisi, V., Madzak, M., Böhm, J., Schuh, H., Ardalan, A.A.: Ray-traced tropospheric slant delays in VLBI analysis. Vermessung Geoinformation (2), 149–153 (2011)

    Google Scholar 

  29. Valtr, P., Pechac, P.: Tropospheric refraction modeling using ray-tracing and parabolic equation. Radioengineering 14(4), 98–104 (2005)

    Google Scholar 

  30. Zhao, X., Yang, P.: A simple two-dimensional ray-tracing visual tool in the complex tropospheric environment. Atmosphere 8(35), 1–10 (2017)

    Google Scholar 

  31. Dinc, E., Akan, O.B.: A ray-based channel modeling approach for MIMO troposcatter beyond-line-of-sight (b-LoS) communications. IEEE Trans. Commun. 63(5), 1690–1699 (2015)

    Article  Google Scholar 

  32. Dinc, E., Akan, O.B.: A nonuniform spatial rain attenuation model for troposcatter communication links. IEEE Wirel. Commun. Lett. 4(4), 441–444 (2015)

    Article  Google Scholar 

  33. Dinc, E., Akan, O.B.: Beyond-line-of-sight ducting channels: coherence bandwidth, coherence time and rain attenuation. IEEE Commun. Lett. 19(12), 2274–2277 (2015)

    Article  Google Scholar 

  34. Dinc, E., Akan, O.B.: Fading correlation analysis in MIMO-OFDM troposcatter communications: space, frequency, angle and space-frequency diversity. IEEE Trans. Commun. 63(2), 476–486 (2015)

    Article  Google Scholar 

  35. Barclay, L. (ed.): Propagation of Radiowaves, p. 470. The Institution of Engineering and Technology, London (2013)

    Google Scholar 

  36. Athanaileas, T.E., Athanasiadou, G.E., Tsoulos, G.V., Kaklamani, D.I.: Parallel radio-wave propagation modeling with image-based ray tracing techniques. Parallel Comput. 36, 679–695 (2010)

    Article  Google Scholar 

  37. Kaur, B.: MATLAB and K-wave based outdoor ray propagation predictor tool SNELLIX for surface wave modelling. Innov. Syst. Des. Eng. 6(11), 7–18 (2015)

    Google Scholar 

  38. Ilchenko, M., Kravchuk, S., Minochkin, D., Afanasieva, L.: Troposcatter communication link model based on ray-tracing. Inf. Telecommun. Sci. (2), 15–20 (2018). https://doi.org/10.20535/2411-2976.22018.15-20

  39. Ilchenko, M.E., Kravchuk, S.A.: Information telecommunication broadband radio access systems. J. Autom. Inf. Sci. 38(4), 69–77 (2006). https://doi.org/10.1615/JAutomatInfScien.v38.i4.60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ilchenko , S. Kravchuk or M. Kaydenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilchenko, M., Kravchuk, S., Kaydenko, M. (2019). Combined Over-the-Horizon Communication Systems. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds) Advances in Information and Communication Technologies. UKRMICO 2018. Lecture Notes in Electrical Engineering, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-030-16770-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16770-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16769-1

  • Online ISBN: 978-3-030-16770-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics