Skip to main content

Micro-CT in Comparison with Histology in the Qualitative Assessment of Bone and Pathologies

  • Chapter
  • First Online:
Micro-computed Tomography (micro-CT) in Medicine and Engineering

Abstract

Bone tissue along with cartilage, fibrous tissue, fat, blood vessels, nerves, and hematopoietic elements forms individual bones. Bone is highly mineralized and multifunctional tissue, which plays roles in mechanical support and protection, mineral homeostasis, and hematopoiesis. In recent years, it has become clear that bone also serves an essential endocrine function. To achieve these functional goals, bone is organized hierarchically, from nanometer- to millimeter-sized structures. This contributes not only to its mechanical role in support and movement of the body but also to its other functions. At the nanostructural level, bone is composed of organic and mineral components, mainly consisting of a matrix of cross-linked type I collagen mineralized with nanocrystalline, carbonated apatite. Due to its high mineral content, bone tissue is extremely resilient, but its organic part also provides a certain degree of flexibility and elasticity improving its behavior under mechanical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MR, Burr DB. Techniques in histomorphometry. In: Basic and applied bone biology; 2014. p. 131–48.

    Google Scholar 

  2. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. An YH, Martin KL. Handbook of histology methods for bone and cartilage. Totowa, NJ: Humana Press; 2003.

    Google Scholar 

  4. Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the theory and practice of fixation of tissues. J Histotechnol. 2001;24:173–90.

    CAS  Google Scholar 

  5. Jones ML. To fix, to harden, to preserve—fixation: a brief history. J Histotechnol. 2001;24:155–62.

    Google Scholar 

  6. Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845–53.

    CAS  PubMed  Google Scholar 

  7. Frost HM. Preparation of thin undecalcified bone sections by rapid manual method. Stain Technol. 1958;33:273–7.

    CAS  PubMed  Google Scholar 

  8. Schaffler MB, Radin EL, Burr DB. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone. 1989;10:207–14.

    CAS  PubMed  Google Scholar 

  9. Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech. 1993;26:613–6.

    CAS  PubMed  Google Scholar 

  10. Lee TC, Myers ER, Hayes WC. Fluorescence-aided detection of microdamage in compact bone. J Anat. 1998;193:179–84.

    PubMed  PubMed Central  Google Scholar 

  11. O’Brien FJ, Taylor D, Lee TC. An improved labelling technique for monitoring microcrack growth in the compact bone. J Biomech. 2002;35:523–6.

    PubMed  Google Scholar 

  12. O’Brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC. The behaviour of microcracks in compact bone. Eur J Morphol. 2005;42:71–9.

    PubMed  Google Scholar 

  13. O’Brien FJ, Taylor D, Dickson GR, Lee TC. Visualisation of three-dimensional microcracks in compact bone. J Anat. 2000;197:413–20.

    PubMed  PubMed Central  Google Scholar 

  14. Mohsin S, Taylor D, Lee TC. Three-dimensional reconstruction of Haversian system in ovine compact bone. Eur J Morphol. 2002;40:309–15.

    CAS  PubMed  Google Scholar 

  15. Shibata Y, Fujita S, Takahashi H, Yamaguchi A, Koji T. Assessment of decalcifying protocols for detection of specific RNA by non-radioactive in situ hybridization in calcified tissues. Histochem Cell Biol. 2000;11:153–9.

    Google Scholar 

  16. Cunningham CD, Schulte BA, Bianchi LM, Weber PC, Schmiedt BN. Microwave decalcification of human temporal bones. Laryngoscope. 2001;111(2):278–82.

    PubMed  Google Scholar 

  17. Buijs R, Dogterom AA. An improved method for embedding hard tissue in polymethyl methacrylate. Stain Technol. 1983;58:135–41.

    CAS  PubMed  Google Scholar 

  18. Sanderson C. Entering the realm of mineralized bone processing: a review of the literature and techniques. J Histotechnol. 1997;20:259–66.

    Google Scholar 

  19. Sanderson C, Emmanuel J, Emmanual J, Campbell P. A historical review of paraffin and its development as an embedding medium. J Histotechnol. 1988;11:61–3.

    Google Scholar 

  20. Skinner RA, Hickmon SG, Lumpkin CK, Aronson J, Nicholas RW. Decalcified bone: twenty years of successful specimen management. J Histotechnol. 1997;20:267–77.

    Google Scholar 

  21. Kahveci Z, Minbay FZ, Cavusoglu L. Safranin O staining using a microwave oven. Biotech Histochem. 2000;75:264–8.

    CAS  PubMed  Google Scholar 

  22. Derkx P, Birkenhäger-Frenkel DH. A thionin stain for visualizing bone cells, mineralizing fronts and cement lines in undecalcified bone sections. Biotech Histochem. 1995;70:70–4.

    CAS  PubMed  Google Scholar 

  23. Gruber HE, Marshall GJ, Nolasco LM, Kirchen ME, Rimoin DL. Alkaline and acid phosphatase demonstration in human bone and cartilage: effects of fixation intervals and methacrylate embedments. Stain Technol. 1988;63:299–306.

    CAS  PubMed  Google Scholar 

  24. Taylor CR, Shi SR, Chen C, Young L, Yang C, Cote RJ. Comparative study of antigen retrieval heating methods: microwave, microwave and pressure cooker, autoclave, and steamer. Biotech Histochem. 1996;71:263–70.

    CAS  PubMed  Google Scholar 

  25. Garvey W. Modified elastic tissue-Masson trichrome stain. Stain Technol. 1984;59(4):213–6.

    CAS  PubMed  Google Scholar 

  26. Lebeau A, Muthmann H, Sendelhofert A, Diebold J, Löhrs U. Histochemistry and immunohistochemistry on bone marrow biopsies. A rapid procedure for methyl methacrylate embedding. Pathol Res Pract. 1995;191:121–9.

    CAS  PubMed  Google Scholar 

  27. Hughes FJ, Aubin JE. Culture of cells of the osteoblast lineage. In: Arnett TRHB, editor. Methods in bone biology. London: Chapman and Hall; 1998. p. 1–39.

    Google Scholar 

  28. Mikuni-Takagaki Y, Kakai Y, Satohoshi M, Kawano E, Suzuki Y, Kawase T, Saito S. Matrix mineralisation and the differentiation of osteocyte-like cells in culture. J Bone Miner Res. 1995;10:231–42.

    CAS  PubMed  Google Scholar 

  29. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12:2014–23.

    CAS  PubMed  Google Scholar 

  30. Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone. 2012;50:688–94.

    PubMed  Google Scholar 

  31. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Püschel K, Djuric M, Amling M, Busse B. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7:7542–51.

    CAS  PubMed  Google Scholar 

  32. Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int. 2013;24:2671–80.

    CAS  PubMed  Google Scholar 

  33. Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts invivo. J Bone Miner Res. 2008;23:1712–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234.

    PubMed  PubMed Central  Google Scholar 

  35. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.

    CAS  PubMed  Google Scholar 

  36. Power J, Noble BS, Loveridge N, Bell KL, Rushton N, Reeve J. Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls. Calcif Tissue Int. 2001;69:13–9.

    CAS  PubMed  Google Scholar 

  37. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9:1065–75.

    CAS  PubMed  Google Scholar 

  38. Carter Y, Suchorab JL, Thomas CD, Clement JG, Cooper DM. Normal variation in cortical osteocyte lacunar parameters in healthy young males. J Anat. 2014;225:328–36.

    PubMed  PubMed Central  Google Scholar 

  39. Kumar V, Abbas AK, Aster JC. Robbins and cotran pathologic basis of disease. 8th ed. Philadelphia, PA: Saunders Elsevier; 2010.

    Google Scholar 

  40. Hartmann C. Skeletal development—Wnts are in control. Mol Cell. 2007;24:177–84.

    CAS  Google Scholar 

  41. Alman BA. Skeletal dysplasias and the growth plate. Clin Genet. 2008;73:24–30.

    CAS  PubMed  Google Scholar 

  42. Mundlos S, Olsen BR. (a). Heritable diseases of the skeleton. Part I: molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 1997;11:125–32.

    CAS  PubMed  Google Scholar 

  43. Mundlos S, Olsen BR. (b). Heritable diseases of the skeleton. Part II: molecular insights into skeletal development-matrix components and their homeostasis. FASEB J. 1997;11:227–33.

    CAS  PubMed  Google Scholar 

  44. Superti-Furga A, Bonafé L, Rimoin DL. Molecular-pathogenetic classification of genetic disorders of the skeleton. Am J Med Genet. 2001;106(4):282–93.

    CAS  PubMed  Google Scholar 

  45. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358:2355–65.

    CAS  PubMed  Google Scholar 

  46. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38:S3–6.

    PubMed  Google Scholar 

  47. Lafforgue P. Pathophysiology and natural history of avascular necrosis of bone. Joint Bone Spine. 2006;73:500–7.

    CAS  PubMed  Google Scholar 

  48. Kaplan SL. Osteomyelitis in children. Infect Dis Clin N Am. 2005;19(4):787–97.

    Google Scholar 

  49. Calhoun JH, Manring MM. Adult osteomyelitis. Infect Dis Clin N Am. 2005;19:765–86.

    Google Scholar 

  50. Lee EH, Shafi M, Hui JH. Osteoid osteoma: a current review. J Pediatr Orthop. 2006;26:695–700.

    PubMed  Google Scholar 

  51. Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125:555–81.

    PubMed  Google Scholar 

  52. Ramappa AJ, Lee FY, Tang P, Carlson JR, Gebhardt MC, Mankin HJ. Chondroblastoma of bone. J Bone Joint Surg Am. 2000;82:1140–5.

    CAS  PubMed  Google Scholar 

  53. Chow WA. Update on chondrosarcomas. Curr Opin Oncol. 2007;19:371–6.

    CAS  PubMed  Google Scholar 

  54. Weinstein LS. G(s)alpha mutations in fibrous dysplasia and McCune-Albright syndrome. J Bone Miner Res. 2006;21:120–4.

    Google Scholar 

  55. Erben RG, Glösmann M. Histomorphometry in rodents. In: Bone research protocols. Totowa, NJ: Humana Press; 2012. p. 279–303.

    Google Scholar 

  56. Vedi S, Compston J. Bone histomorphometry. In: Bone research protocols: Humana Press; 2003. p. 283–98.

    Google Scholar 

  57. Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry. J Biomed Mater Res B Appl Biomater. 2013;101:1259–66.

    PubMed  Google Scholar 

  58. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.

    PubMed  Google Scholar 

  59. Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res. 2005;20:1177–84.

    PubMed  Google Scholar 

  60. Bonnet N, Laroche N, Vico L, Dolleans E, Courteix D, Benhamou CL. Assessment of trabecular bone microarchitecture by two different x-ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices. Med Phys. 2009;36:1286–97.

    CAS  PubMed  Google Scholar 

  61. Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23:59–66.

    PubMed  Google Scholar 

  62. Kuroyanagi G, Adapala NS, Yamaguchi R, Kamiya N, Deng Z, Aruwajoye O, Kutschke M, Chen E, Jo C, Ren Y, Kim HKW. Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Bone. 2018;116:221–31.

    CAS  PubMed  Google Scholar 

  63. Zhao B, Zhao W, Wang Y, Zhao Z, Zhao C, Wang S, Gao C. Prior administration of vitamin K2 improves the therapeutic effects of zoledronic acid in ovariectomized rats by antagonizing zoledronic acid-induced inhibition of osteoblasts proliferation and mineralization. PLoS One. 2018;13:e0202269.

    PubMed  PubMed Central  Google Scholar 

  64. Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT. The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech. 2013;46:2611–8.

    PubMed  Google Scholar 

  65. Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A. The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone. 2006;38(1):136–44.

    PubMed  Google Scholar 

  66. de Oliveira KM, da Silva RA, Küchler EC, de Queiroz AM, Nelson Filho P, da Silva LA. Correlation between histomorphometric and micro-computed tomography analysis of periapical lesions in mice model. Ultrastruct Pathol. 2015;39(3):187–91.

    PubMed  Google Scholar 

  67. Balto K, Müller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res. 2000;79:35–40.

    CAS  PubMed  Google Scholar 

  68. Wan C, Yuan G, Yang J, Sun Q, Zhang L, Zhang J, Zhang L, Chen Z. MMP9 deficiency increased the size of experimentally induced apical periodontitis. J Endod. 2014;40:658–64.

    PubMed  Google Scholar 

  69. Wang S, Ogawa T, Zheng S, Miyashita M, Tenkumo T, Gu Z, Lian W, Sasaki K. The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in beagle dogs. J Prosthodont Res. 2018;

    Google Scholar 

  70. Sakagami N, Kobayashi T, Nozawa-Inoue K, Oda K, Kojima T, Maeda T, Saito C. A histologic study of deformation of the mandibular condyle caused by distraction in a rat model. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:284–94.

    PubMed  Google Scholar 

  71. Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, Bonfante EA, Coelho PG. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater. 2015;103:798–806.

    PubMed  Google Scholar 

  72. Lai G, Kaisarly D, Xu X, Kunzelmann KH. MicroCT-based comparison between fluorescence-aided caries excavation and conventional excavation. Am J Dent. 2014;27:12–6.

    PubMed  Google Scholar 

  73. Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig. 2006;10:1–7.

    PubMed  Google Scholar 

Download references

Acknowledgment

The specimen in this study were scanned and reconstructed with Skyscan 1275 (Skyscan, Kontich, Belgium) in Ankara University, Faculty of Dentistry, Micro CT Laboratory which was founded by Ankara University Research Fund (Project No: 17A0234001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Aksoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aksoy, U., Ă–zkayalar, H., Orhan, K. (2020). Micro-CT in Comparison with Histology in the Qualitative Assessment of Bone and Pathologies. In: Orhan, K. (eds) Micro-computed Tomography (micro-CT) in Medicine and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16641-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16641-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16640-3

  • Online ISBN: 978-3-030-16641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics