Skip to main content

Micelles and Nanoemulsions

  • Chapter
  • First Online:
Book cover Nanocosmetics

Abstract

Nanoemulsions and block copolymer micelles have specific features that are make them quite attractive for their application in cosmetic products. Both of them are organic nanoparticles having a liquid core. They are made from the same ingredients as classical emulsions, and their overall organization is also the same. Only the droplet size is smaller by a factor of 10 to 100. The chapter first gives a presentation of the physical chemistry of nanoemulsions and block copolymer micelles, then a discussion of the consequences of the small size to properties focusing on skin absorption. The sub-micron size brings about new properties such as accelerated skin delivery of active substances, absence of creaming in fluid products, immediate skin occlusion, transparency, and gloss after spreading. On the one hand, they are used as drug carriers for topical administration. On the other hand, fast occlusion of skin provides an immediate feeling which is a benefit in moisturizing products. Such properties are discussed with some help of studies carried out for pharmaceutical applications. Their current and prospective implementations in cosmetic technologies are addressed. Finally, the possible safety issues related to the size in the nano-scale are discussed on technical grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. J Drug Deliv Sci Technol. 2009;19:371–84.

    Article  Google Scholar 

  2. Briançon S, Chevalier Y, Bolzinger M-A. Biopharmaceutical evaluation of various dosage forms intended for caffeine topical delivery. In: Chilcott R, Brain K editors. Advances in dermatological sciences. Issues in Toxicology No 20, RSC Publishing, Cambridge; 2013, Chap 8. pp 88–100.

    Google Scholar 

  3. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–10.

    Article  CAS  Google Scholar 

  4. Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–70.

    Article  CAS  Google Scholar 

  5. Gohy J-F. Block copolymer micelles. Adv Polym Sci. 2005;190:65–136.

    Article  CAS  Google Scholar 

  6. Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev. 1995;16:141–55.

    Article  CAS  Google Scholar 

  7. Yukuyama MN, Ghisleni DDM, Pinto TJA, Bou-Chacra NA. Nanoemulsion: process selection and application in cosmetics—a review. Int J Cosmet Sci. 2016;38:13–24.

    Article  CAS  PubMed  Google Scholar 

  8. Sonneville-Aubrun O, Simonnet J-T, L’Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108–109:145–9.

    Article  PubMed  CAS  Google Scholar 

  9. Baspinar Y, Keck CM, Borchert H-H. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383:201–8.

    Article  CAS  PubMed  Google Scholar 

  10. Förster T, von Rybinski W, Wadle A. Influence of microemulsion phases on the preparation of fine-disperse emulsions. Adv Colloid Interface Sci. 1995;158:119–49.

    Article  Google Scholar 

  11. Izquierdo P, Esquena J, Tadros TF, Dederen JC. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir. 2004;20:6594–8.

    Article  CAS  PubMed  Google Scholar 

  12. Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5:1595–616.

    Article  CAS  PubMed  Google Scholar 

  13. Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  14. Meyer J, Scheuermann R, Wenk HH. Combining convenience and sustainability: Simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 2008;134:58–64.

    CAS  Google Scholar 

  15. Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329:166–72.

    Article  CAS  PubMed  Google Scholar 

  16. Sadurní N, Solans C, Azemar N, García-Celma MJ. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci. 2005;26:438–45.

    Article  PubMed  CAS  Google Scholar 

  17. Klang V, Valenta C. Lecithin-based nanoemulsions. J Drug Deliv Technol. 2011;21:55–76.

    Article  CAS  Google Scholar 

  18. Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem Toxicol. 2015;85:127–37.

    Article  CAS  PubMed  Google Scholar 

  19. Massignani M, Lomas H, Battaglia G. Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci. 2010;229:115–54.

    Article  CAS  Google Scholar 

  20. Riley T, Heald CR, Stolnik S, Garnett MC, Illum L, Davis SS, King SM, Heenan RK, Purkiss SC, Barlow RJ, Gellert PR, Washington C. Core-shell structure of PLA-PEG nanoparticles used for drug delivery. Langmuir. 2003;19:8428–35.

    Article  CAS  Google Scholar 

  21. Zana R, Marques C, Johner A. Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution. Adv Colloid Interface Sci. 2006;123–126:345–51.

    Article  PubMed  CAS  Google Scholar 

  22. Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations. J Pharm Sci. 2008;97:1179–90.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar N, Ravikumar MNV, Domb AJ. Biodegradable block copolymers. Adv Drug Deliv Rev. 2001;53:23–44.

    Article  CAS  PubMed  Google Scholar 

  24. Heald CR, Stolnik S, Kujawinski KS, De Matteis C, Garnett MC, Illum L, Davis SS, Purkiss SC, Barlow RJ, Gellert PR. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir. 2002;18:3669–75.

    Article  CAS  Google Scholar 

  25. Patel SK, Lavasanifar A, Choi P. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with increasing PCL content for two hydrophobic cucurbitacin drugs. Biomacromol. 2009;10:2584–91.

    Article  CAS  Google Scholar 

  26. Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci. 2012;17:156–65.

    Article  CAS  Google Scholar 

  27. Pflücker F, Hohenberg H, Hölzle E, Will T, Pfeiffer S, Wepf R, Diembeck W, Wenck H, Gers-Barlag H. The outermost stratum corneum layer is an effective barrier against dermal uptake of topically applied micronized titanium dioxide. Int J Cosmet Sci. 1999;21:399–411.

    PubMed  Google Scholar 

  28. Monteiro-Riviere NA, Riviere JE. Interaction of nanomaterials with skin: aspects of absorption and biodistribution. Nanotoxicology. 2009;3:188–93.

    Article  CAS  Google Scholar 

  29. Monteiro-Riviere NA, Baroli B. Nanomaterial penetration. In: Monteiro-Riviere NA. editor. Toxicology of the skin, target organ toxicology series. New York: Informa Healthcare; 2010, Ch. 22. pp. 333–46.

    Google Scholar 

  30. Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J, Vogt A. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano. 2012;6:6829–42.

    Article  CAS  PubMed  Google Scholar 

  31. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Investigative Dermatol. 2006;126:1316–22.

    Article  CAS  Google Scholar 

  32. Bolzinger M-A, Briançon S, Chevalier Y. Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. WIREs Nanomed Nanobiotechnol. 2011;3:463–78.

    Article  CAS  Google Scholar 

  33. Schaefer H, Watts F, Brod J, Illel B. Follicular penetration. In: Scott RC, Guy RH, editors. Prediction of percutaneous penetration, methods, measurements, modelling. London: IBC Technical Services; 1990. p. 163–73.

    Google Scholar 

  34. Illel B. Formulation for transfollicular drug administration: some recent advances. Crit Rev Therap Drug Carrier Syst. 1997;14:207–19.

    CAS  Google Scholar 

  35. Lekki J, Stachura Z, Dąbroś W, Stachura J, Menzel F, Reinert T, Butz T, Pallon J, Gontier E, Ynsa MD, Moretto P, Kertesz Z, Szikszai Z, Kiss AZ. On the follicular pathway of percutaneous uptake of nanoparticles: Ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res B. 2007;260:174–7.

    Article  CAS  Google Scholar 

  36. Frelichowska J, Bolzinger M-A, Valour J-P, Mouaziz H, Pelletier J, Chevalier Y. Pickering w/o emulsions: drug release and topical delivery. Int J Pharm. 2009;368:7–15.

    Article  CAS  PubMed  Google Scholar 

  37. Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A. Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm. 2012;428:1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, Büttemeyer R, Linscheid M, Liebsch M, Lademann J. Permeation of topically applied caffeine through human skin—a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68:181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fox C. Stable o/w nanoemulsions for skin and other topics: literature findings. Cosmet Toiletries. 2010;125(3):30–8.

    CAS  Google Scholar 

  40. Rigano L, Lionetti N. In: Grumezescu A, editor. Nanobiomaterials in galenic formulations and cosmetics. Applications of nanobiomaterials, vol 10. Oxford: William Andrew—Applications of nanobiomaterialsElsevier; 2016. Chap 6. p. 121–48.

    Google Scholar 

  41. Meyer J, Polak G, Scheuermann R. Preparing PIC emulsions with a very fine particle size. Cosmet Toiletries. 2007;122(1):61–70.

    CAS  Google Scholar 

  42. Meyer J, Scheuermann R, Wenk HH. Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 2008;6:58–64.

    Google Scholar 

  43. Heunnemann P, Prévost S, Grillo I, Marino CM, Meyer J, Gradzielski M. Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter. 2011;7:5697–710.

    Article  CAS  Google Scholar 

  44. https://www.sinerga.it/files/materie-prime/nanocream/nanocream-flyer.pdf.

  45. Comini M, Lenzini M, Guglielmini G. Nanoemulsions comprising lipoaminoacids and monoglycerides, diglycerides and polyglycerides of fatty acids. Patent WO. 2006;2006087156:A1.

    Google Scholar 

  46. Tsutsumi H, Utsugi T, Hayashi S. Study on the occlusivity of oil films. J Soc Cosmet Chem. 1979;30:345–56.

    CAS  Google Scholar 

  47. Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T. Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J Pharm Sci. 2015;104:3510–23.

    Article  CAS  PubMed  Google Scholar 

  48. Campani V, Biondi M, Mayol L, Cilurzo F, Pitaro M, De Rosa G. Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm. 2016;511:170–7.

    Article  CAS  PubMed  Google Scholar 

  49. Calderilla-Fajardo SB, Cazares-Delgadillo J, Villalobos-García R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R. Influence of sucrose esters in the in vivo penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsions and emulsions. Drug Develop Ind Pharm. 2006;32:107–13.

    Article  CAS  Google Scholar 

  50. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, Yan Z, Duan M. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett. 2010;5:224–30.

    Article  CAS  Google Scholar 

  52. Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm. 2015;41:560–6.

    Article  CAS  PubMed  Google Scholar 

  53. Alves MP, Escarrone AL, Santos M, Pohlmann AR, Guterres SS. Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm. 2007;341:215–20.

    Article  CAS  PubMed  Google Scholar 

  54. Nam YS, Kim J-W, Park JY, Shim J, Lee JS, Han SH. Tocopheryl acetate nanoemulsions stabilized with lipid–polymer hybrid emulsifiers for effective skin delivery. Colloids Surf B. 2012;94:51–7.

    Article  CAS  Google Scholar 

  55. Lu W-C, Chiang B-H, Huang D-W, Li P-H. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrason Sonochem. 2014;21:826–32.

    Article  CAS  PubMed  Google Scholar 

  56. Isailović T, Đorđević S, Marković B, Ranđdelović D, Cekić N, Lukić M, Pantelić I, Daniels R, Savić S. Biocompatible nanoemulsions for improved aceclofenac skin delivery: formulation approach using combined mixture-process experimental design. J Pharm Sci. 2016;105:308–23.

    Article  PubMed  CAS  Google Scholar 

  57. Klang V, Matsko N, Zimmermann A-M, Vojnikovic E, Valenta C. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm. 2010;393:152–60.

    Article  CAS  PubMed  Google Scholar 

  58. Klang V, Haberfeld S, Hartl A, Valenta C. Effect of γ-cyclodextrin on the in vitro skin permeation of a steroidal drug from nanoemulsions: Impact of experimental setup. Int J Pharm. 2012;423:535–42.

    Article  CAS  PubMed  Google Scholar 

  59. Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370:181–6.

    Article  CAS  PubMed  Google Scholar 

  60. Baspinar Y, Borchert H-H. Penetration and release studies of positively and negatively charged nanoemulsions—is there a benefit of the positive charge? Int J Pharm. 2012;430:247–52.

    Article  CAS  PubMed  Google Scholar 

  61. Yilmaz E, Borchert H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—an in vivo study. Int J Pharm. 2006;307:232–8.

    Article  CAS  PubMed  Google Scholar 

  62. Youenang Piemi MP, Korner D, Benita S, Marty J-P. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J Control Release. 1999;58:177–87.

    Article  PubMed  Google Scholar 

  63. Reinhold U. A review of BF-200 ALA for the photodynamic treatment of mild-to-moderate actinic keratosis. Future Oncol. 2017;13:2413–28.

    Article  CAS  PubMed  Google Scholar 

  64. Schmitz L, Novak B, Hoeh A-K, Luebbert H, Dirschka T. Epidermal penetration and protoporphyrin IX formation of two different 5-aminolevulinic acid formulations in ex vivo human skin. Photodiagn Photodyn Ther. 2016;14:40–6.

    Article  CAS  Google Scholar 

  65. Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies R-M. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exper Dermatol. 2010;19:e302–5.

    Article  Google Scholar 

  66. Primo FL, Rodrigues MA, Simioni AR, Bentley MVLB, Morais PC, Tedesco AC. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. J Magn Magn Mater. 2008;320:e211–4.

    Article  CAS  Google Scholar 

  67. Primo FL, Michieleto L, Rodrigues MAM, Macaroff PP, Morais PC, Lacava ZGM, Bentley MVLB, Tedesco AC. Magnetic nanoemulsions as drug delivery system for Foscan®: Skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer. J Magn Magn Mater. 2007;311:354–7.

    Article  CAS  Google Scholar 

  68. Spagnul A, Bouvier-Capely C, Phan G, Landon G, Tessier C, Suhard D, Rebière F, Agarande M, Fattal E. Ex vivo decrease in uranium diffusion through intact and excoriated pig ear skin by a calixarene nanoemulsion. Eur J Pharm Biopharm. 2011;79:258–67.

    Article  CAS  PubMed  Google Scholar 

  69. Spagnul A, Bouvier-Capely C, Phan G, Rebière F, Fattal E. A new formulation containing calixarene molecules as an emergency treatment of uranium skin contamination. Health Phys. 2010;99:430–4.

    Article  CAS  PubMed  Google Scholar 

  70. Spagnul A, Bouvier-Capely C, Phan G, Rebière F, Fattal E. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions. J Pharm Sci. 2010;99:1375–83.

    Article  CAS  PubMed  Google Scholar 

  71. Spagnul A, Bouvier-Capely C, Adam M, Phan G, Rebière F, Fattal E. Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion. Int J Pharm. 2010;398:179–84.

    Article  CAS  PubMed  Google Scholar 

  72. Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–84.

    Article  CAS  PubMed  Google Scholar 

  73. Bachhav YG, Mondon K, Kalia YN, Gurny R, Möller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release. 2011;153:126–32.

    Article  CAS  PubMed  Google Scholar 

  74. Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Valour J-P, Rovère M-R, Smatti B, Chevalier Y. Skin delivery by block copolymer micelles (block copolymer nanoparticles). Int J Pharm. 2015;496:1034–46.

    Article  CAS  PubMed  Google Scholar 

  75. Hansen CM. Hansen solubility parameters. Boca Raton, FLA: A User’s Handbook. CRC Press; 2000.

    Google Scholar 

  76. Rastogi R, Anand S, Koul V. Flexible polymerosomes—an alternative vehicle for topical delivery. Colloids Surf B. 2009;72:161–6.

    Article  CAS  Google Scholar 

  77. Chausson M, Fluchère A-S, Landreau E, Aguni Y, Chevalier Y, Hamaide T, Abdul-Malak N, Bonnet I. Block copolymers of the type poly(caprolactone)-b-poly(ethylene oxide) for the preparation and stabilization of nanoemulsions. Int J Pharm. 2008;362:153–62.

    Article  CAS  PubMed  Google Scholar 

  78. Chevalier Y, Bolzinger M-A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf A. 2013;439:23–34.

    Article  CAS  Google Scholar 

  79. Laredj-Bourezg F, Chevalier Y, Boyron O, Bolzinger M-A. Emulsions stabilized with solid organic particles. Colloids Surf A. 2012;413:252–9.

    Article  CAS  Google Scholar 

  80. Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Chevalier Y. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int J Pharm. 2017;531:134–42.

    Article  CAS  PubMed  Google Scholar 

  81. Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Rovère M-R, Smatti B, Chevalier Y. Pickering emulsions stabilised by biodegradable particles offer a double level of controlled delivery of hydrophobic drugs. In: Chilcott R, Brain K, editors. Advances in dermatological sciences. Issues in Toxicology No 20. Cambridge: RSC Publishing; 2013, Chap 12. pp 143–56.

    Google Scholar 

  82. Kim BS, Yang MW, Lee KM, Kim CS. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug. Drug Deliv. 2008;15:465–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sakeena MHF, Muthanna FA, Ghassan ZA, Kanakal MM, Elrashid SM, Munavvar AS, Azmin MN. Formulation and in vitro evaluation of ketoprofen in palm oil esters nanoemulsion for topical delivery. J Oleo Sci. 2010;5:223–8.

    Article  Google Scholar 

  84. Sakeena MHF, Elrashid SM, Muthanna FA, Ghassan ZA, Kanakal MM, Laila L, Munavvar AS, Azmin MN. Effect of limonene on permeation enhancement of ketoprofen in palm oil esters nanoemulsion. J Oleo Sci. 2010;5:395–400.

    Google Scholar 

  85. Sakeena MHF, Yam MF, Elrashid SM, Munavvar AS, Azmin MN. Anti-inflammatory and analgesic effects of ketoprofen in palm oil esters nanoemulsion. J Oleo Sci. 2010;5:667–71.

    Google Scholar 

  86. Elrashid SM, Azmin MN, Sakeena MH, Ghassan ZA, Muthanna FA, Munavvar AS. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int J Nanomed. 2011;6:2499–512.

    Google Scholar 

  87. Fontana MC, Rezer JFP, Coradini K, Leal DBR, Beck RCR. Improved efficacy in the treatment of contact dermatitis in rats by a dermatological nanomedicine containing clobetasol propionate. Eur J Pharm Biopharm. 2011;79:241–9.

    Article  CAS  PubMed  Google Scholar 

  88. Yu M, Ma H, Lei M, Li N, Tan F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm. 2014;88:92–103.

    Article  CAS  PubMed  Google Scholar 

  89. Ngan CL, Basri M, Tripathy M, Karjiban RA, Abdul-Malek E. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur J Pharm Sci. 2015;70:22–8.

    Article  CAS  PubMed  Google Scholar 

  90. Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y, Lu Y. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8:38214–26.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chevalier, Y., Bolzinger, MA. (2019). Micelles and Nanoemulsions. In: Cornier, J., Keck, C., Van de Voorde, M. (eds) Nanocosmetics. Springer, Cham. https://doi.org/10.1007/978-3-030-16573-4_4

Download citation

Publish with us

Policies and ethics