Skip to main content

Abstract

Angiogenesis refers to the growth of newly formed blood vessels from pre-existing vasculature (Wang et al., Oncotarget. 8:53854–72, 2017). Blocking the formation of blood vessels, theoretically, would stop a tumor from growing and metastasizing. For decades researchers have studied tumor growth and metastasis, ultimately discovering tumor-angiogenesis factor vascular endothelial growth factor (VEGF). This discovery led to a different way of treating cancer, blocking certain targets to stop tumor growth (targeted therapy). The discoveries of VEGF, immunotherapy, and driver mutations have changed the treatment paradigm of lung cancer.

There are two anti-angiogenic agents, bevacizumab and ramucirumab, used in combination with chemotherapy agents as first-line and second-line therapy for patients with non-small cell lung cancer (NSCLC). These agents provide an option for VEGF targeted therapy treatment for NSCLC with relatively manageable toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camp-Sorrell D. Anti-angiogenesis: the fifth cancer treatment modality? Oncol Nurs Forum. 2003;30(6):934–44. https://doi.org/10.1188/03.ONF.934-944.

    Article  PubMed  Google Scholar 

  2. Viele CS. Keys to unlock cancer; targeted therapy. Oncol Nurs Forum. 2005;32(5):935–40. https://doi.org/10.1188/05.ONF.

    Article  PubMed  Google Scholar 

  3. Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies-a review. J Adv Res. 2017;8(6):591–605. https://doi.org/10.1016/j.jare.2017.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015;3(33):1–15. https://doi.org/10.3389/fped.2015.00033.

    Article  Google Scholar 

  5. Ellis LM. The biology of VEGF and tumor angiogenesis. Horizons in Cancer Therapeutics: From Bench to Bedside. 2004;5:4–10.

    Google Scholar 

  6. Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13(5):247–63. https://doi.org/10.4161/cbt.13.5.19594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(2):646–74. https://doi.org/10.1016/j.cell.2011.02.03.

    Article  CAS  PubMed  Google Scholar 

  8. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27. https://doi.org/10.1200/JCO.2005.06.081.

    Article  CAS  PubMed  Google Scholar 

  9. Blagosklonny MV. Hypoxia-inducible factor: Achilles’ heel of antiangiogenic cancer therapy. Int J Oncol. 2001;19:257–62. https://doi.org/10.3892/ijo.19.2.257.

    Article  CAS  PubMed  Google Scholar 

  10. Brooks NA, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 2012;18(7):1855–62. https://doi.org/10.1158/1078-0432.CCR-11-1590.

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65. https://doi.org/10.1016/J.CEB.2008.12.012.

    Article  CAS  PubMed  Google Scholar 

  13. Fontanini G, Lucchi M, Viganti S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolos F, Angeletti CA, Bevilaqua G. Angiogenesis as a prognostic indicator of survival in non-small cell lung cancer: a prospective study. J Natl Cancer Inst. 1997;89(12):881–6. https://doi.org/10.1093/JNCI/89.12.881.

    Article  CAS  PubMed  Google Scholar 

  14. Lucchi M, Fontanini G, Mussi A, Vignati S, Ribechini A, Menconi GF, Bevilaqua G, Angeletti CA. Tumor angiogenesis and biologic markers in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 1997;12(4):535–41. https://doi.org/10.1016/S1010-7940(97)00218-2.

    Article  CAS  PubMed  Google Scholar 

  15. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460–76. https://doi.org/10.1016/j.cell.2010.01.045.

    Article  CAS  PubMed  Google Scholar 

  16. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35. https://doi.org/10.1038/nrc1628.

    Article  CAS  PubMed  Google Scholar 

  17. Skliarenko JV, Lunt SJ, Gordon ML, Vitkin A, Milosevic M, Hill RP. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors. Cancer Res. 2006;66(4):2074–80. https://doi.org/10.1158/0008-5472.CAN-05-2046.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson SP, McIntyre DJ, Checkley D, Tessier JJ, Howe FA, Griffiths JR, Ashton SE, Ryan AJ, Blakey DC, Waterton JC. Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging. Br J Cancer. 2003;88(10):1592–7. https://doi.org/10.1038/sj.bjc.6600926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manzo A, Montanino A, Carillio G, Costanzo R, Sandomenico C, Normanno N, Piccirillo MC, Morabito A. Angiogenesis inhibitors in NSCLC: review. Int J Mol Sci. 2017;18(2021):1–17. https://doi.org/10.3390/ijms18102021.

    Article  CAS  Google Scholar 

  20. Homsi J, Daud AI. Spectrum of activity and metabolism of action of VEGF/PDGR inhibitors. Cancer Control. 2007;14(3):285–94.

    Article  PubMed  Google Scholar 

  21. Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget. 2017;8(32):53854–72. https://doi.org/10.18632/oncotarget.17957.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sandler AB, Gray R, Perry MC, Brahmer J, Schiller J, Dowlati A, Lilenbaum R, Johnson DH. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med. 2006;355(24):2542–50. https://doi.org/10.1056/NEJMoa061884.

    Article  CAS  PubMed  Google Scholar 

  23. Sandler AB, Yi J, Dahlberg S, Kolb MM, Wang L, Hambleton J, Schiller J, Johnson DH. Treatment outcomes by tumor histology in Eastern Cooperative Group (ECOG) Study E4599 of bevacizumab with paclitaxel/carboplatin for Advanced Non-Small Cell Lung Cancer (NSCLC). J Thorac Oncol. 2010;5(9):1416–23. https://doi.org/10.1097/JTO.0b013e3181da36f4.

    Article  PubMed  Google Scholar 

  24. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsch V, Leighl N, Mezger J, Archer V, Moore C, Manegold C. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for non-squamous non-small cell lung cancer: AVAiL. J Clin Oncol. 2009;27(8):1227–34. https://doi.org/10.1200/JCO.2007.14.5466.

    Article  CAS  PubMed  Google Scholar 

  25. Soria JC, Mauguen A, Reck M, Sandler AB, Saijo N, Johnson DH, Burcoveanu D, Fukuoka M, Bess P, Pignon JP, on Behalf of the Meta-Analysis of Bevacizumab in Advanced NSCLC Collaborative Group. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2013;24(1):20–30. https://doi.org/10.1093/annonc/mds590.

    Article  PubMed  Google Scholar 

  26. Behera M, Pillai RM, Owonikoko TK, Kim S, Steuer C, Chen Z, Saba NF, Belani CP, Khuri FR, Ramalingam SS. Bevacizumab in combination with taxane versus non-taxane containing regimens for advanced/nonsquamous non-small cell lung cancer: a systematic review. J Thorac Oncol. 2015;10(8):1142–7. https://doi.org/10.1097/JTO.0000000000000572.

    Article  CAS  PubMed  Google Scholar 

  27. Patel JD, Bonomi P, Socinski MA, Govindan R, Hong S, Obasaju C, Pennella EJ, Girvan AC, Guba SC. Treatment rationale and study design for the PointBreak study: a randomized, open-label phase III study of pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab versus paclitaxel/carboplatin/bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small cell lung cancer. Clin Lung Cancer. 2009;10(4):252–6. https://doi.org/10.3816/CLC.2009.n.035.

    Article  CAS  PubMed  Google Scholar 

  28. Barlesi F, Scherpereel A, Rittmeyer A, Pazzola A, Ferrer Tur N, Kim JH, Ahn MJ, Aerts JG, Gorbunova V, Vistrom A, Wong EK, Perez-Moreno P, Mitchell L, Groen HJM. Randomized phase III trial of maintenance bevacizumab, with or without pemetrexed after first-line induction with and pemetrexed in advanced non-squamous non-small cell lung cancer: AVAPERL (MO22089). J Clin Oncol. 2013;31(24):3004–11. https://doi.org/10.1200/JCO.2012.42.3749.

    Article  CAS  PubMed  Google Scholar 

  29. Herbst RS, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, Vlahovic G, Soh C-H, O’Connor P, Hainsworth J. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet. 2011;377(9780):1846–54. https://doi.org/10.1016/S0140-6736(11)60545-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li M, Kroetz DL. Bevacizumab-induced hypertension: clinical and molecular understanding. Pharmacol Ther. 2018;182:152–60. https://doi.org/10.1016/j.pharmthera.2017.08.012.

    Article  CAS  PubMed  Google Scholar 

  31. Genentech Inc. Avastin prescribing information. 2016. https://www.gene.com/download/pdf/avastin_prescribing.pdf.

  32. Marrs J, Zubal BA. Oncology nursing in a new era: optimizing treatment with bevacizumab. Clin J Oncol Nurs. 2009;13(5):564–72. https://doi.org/10.1188/09.CJON.564-572.

    Article  PubMed  Google Scholar 

  33. Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, Ivy SP, Cardiovascular Toxicities Panel Convened by the Angiogenesis Task Force of the National Cancer Institute Investigational Drug Steering Committee. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596–604. https://doi.org/10.1093/jnci/djq091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93. https://doi.org/10.1053/j.ajkd.2006.11.039.

    Article  CAS  PubMed  Google Scholar 

  35. Yang ZY, Simari RD, Perkins ND, San H, Gordon D, Nabel GJ, Nabel EG. Role of p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci. 1996;93(15):7905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Izzedine H, Ederhy S, Goldwasser F, Soria JC, Milano G, Cohen A, Khayat D, Spano JP. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20(5):807–15. https://doi.org/10.1093/annonc/mdn713.

    Article  CAS  PubMed  Google Scholar 

  37. Langenberg MHG, van Herpen CML, De Bono J, Schellens JHM, Unger C, Hoekman K, Blum HE, Voest EE. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of cediranib in patients with advanced solid tumors. J Clin Oncol. 2009;27(36):6152–9. https://doi.org/10.1200/JCO.2009.22.2273.

    Article  CAS  PubMed  Google Scholar 

  38. Neill, T.A. Reversible posterior leukoencephalopathy syndrome. 2018. http://www.uptodate.com. Accessed 25 Jan 2018.

  39. Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, Pessin MS, Lamy C, Mas J-L, Caplan LR. A reversible leukoencephalopathy syndrome. N Engl J Med. 1996;334(8):494–500. https://doi.org/10.1056/NEJM199602223340803.

    Article  CAS  PubMed  Google Scholar 

  40. Choueiri TK, Sonpavde G. Toxicity of molecularly targeted antiangiogenic agents: non-cardiovascular effects. 2017. http://www.uptodate.com. Accessed 15 Sept 2017.

  41. Sclafani F, Giuseppe G, Mezynski J, Collins C, Crown J. Reversible posterior leukoencephalopathy syndrome in breast cancer. J Clin Oncol. 2012;30(26):e257–9. https://doi.org/10.1200/JCO.2011.38.8942.

    Article  PubMed  Google Scholar 

  42. Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984;15(3):413–6. https://doi.org/10.1161/01.STR.15.3.413.

    Article  CAS  PubMed  Google Scholar 

  43. Bastos B, Ibrahim M, Hoffman J, Kernan W, Pinto D. Reversible posterior leukoencephalopathy syndrome secondary to bevacizumab. J Hematol Oncol Pharm. 2011;1(2):1–8.

    Google Scholar 

  44. Marinella MA, Markert RJ. Reversible posterior leucoencephalopathy syndrome associated with anticancer drugs. Intern Med J. 2009;39(12):826–34. https://doi.org/10.1111/j.1445-5994.2008.01829x.

    Article  CAS  PubMed  Google Scholar 

  45. Vaughn C, Zhang L, Schiff D. Reversible posterior leukoencephalopathy syndrome in cancer. Curr Oncol Rep. 2008;10(1):86–91.

    Article  PubMed  Google Scholar 

  46. Shord SS, Bresler LR, Tierney LA, Cuellar S, Geroge A. Understanding and managing the possible adverse effects associated with bevacizumab. Am J Health Syst Pharm. 2009;66(11):999–1013. https://doi.org/10.2146/ajhp080455.

    Article  CAS  PubMed  Google Scholar 

  47. Wu S, Kim C, Baer L, Zhu X. Bevacizumab increased risk for severe proteinuria in cancer patients. J Am Soc Nephrol. 2010;21(8):1381–9. https://doi.org/10.1681/ASN.2010020167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48. https://doi.org/10.1016/J.EJCA.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  49. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Quaggin SE. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36. https://doi.org/10.1056/NEJMoa0707330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Kabbinavar F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small cell lung cancer. J Clin Oncol. 2004;22(11):2184–91. https://doi.org/10.1200/JCO.2004.11.022.

    Article  CAS  PubMed  Google Scholar 

  51. Maynard SE, Min JY, Merchan J, Lim K-H, Li J, Mondal S, Libermann TA, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58. https://doi.org/10.1172/JCI17189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bollee G, Patey N, Cazajous G, Robert C, Goujon J-M, Fakhouri F, Bruneval P, Noel L-H, Knebelmann B. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24(2):682–5. https://doi.org/10.1093/ndt/gfn657.

    Article  CAS  PubMed  Google Scholar 

  53. George BA, Zhou XJ, Toto R. Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis. 2007;49(2):e23–9. https://doi.org/10.1053/j.ajkd.2006.11.024.

    Article  PubMed  Google Scholar 

  54. Dincer M, Altundag K. Angiotensin-converting enzyme inhibitors fbevacuzmab-induced hypertension. Ann Pharmacother. 2006;40(12):2278–9. https://doi.org/10.1345/aph.1H244.

    Article  PubMed  Google Scholar 

  55. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, Ruff P, Allegra C. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–506. https://doi.org/10.1200/JCO.2012.42.8201.

    Article  CAS  PubMed  Google Scholar 

  56. Zangari M, Fink LM, Elice F, Zhan F, Adcock DM, Tricot GJ. Thrombotic events in patients with cancer receiving antiangiogene agents. J Clin Oncol. 2009;27(29):4865–73. https://doi.org/10.1200/JCO.2009.22.3875.

    Article  CAS  PubMed  Google Scholar 

  57. Mir O, Mouthon L, Alexandre J, Mallion J-M, Deray G, Guillevin L, Goldwasser F. Bevacizumab-induced cardiovascular events: a consequence of cholesterol emboli syndrome? J Natl Cancer Inst. 2007;99(1):85–6. https://doi.org/10.1093/jnci/djk011.

    Article  PubMed  Google Scholar 

  58. Choueiri TK, Sonpavde G. Toxicity of molecularly targeted antiangiogenic agents: cardiovascular effects. 2017. http://www.uptodate.com. Accessed 15 Sept 2017.

  59. Han ES, Monk BJ. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol Oncol. 2007;105(1):3–6. https://doi.org/10.1016/j.ygyno.2007.01.038.

    Article  CAS  PubMed  Google Scholar 

  60. Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7(6):475–85. https://doi.org/10.1038/nrc2152.

    Article  CAS  PubMed  Google Scholar 

  61. Ganapathi AM, Westmoreland T, Tyler D, Mantyh CR. Bevacizumab-associated fistula formation in postoperative colorectal cancer patients. J Am Coll Surg. 2012;214(4):582–8. https://doi.org/10.1016/j.jamcollsurg.2011.12.030.

    Article  PubMed  Google Scholar 

  62. Cortes J, Caralt M, Delaloge S, Cortes-Funes H, Pierga JY, Pritchard KI, Bollag DT, Miles DW. Safety of bevacizumab in metastatic breast cancer patients undergoing surgery. Eur J Cancer. 2012;48(4):475–81. https://doi.org/10.1016/j.ejca.2011.11.021.

    Article  CAS  PubMed  Google Scholar 

  63. Hapani S, Sher A, Chu D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010;79:27–38. https://doi.org/10.1159/000314980.

    Article  CAS  PubMed  Google Scholar 

  64. Lai X-X, Xu R-A, Li Y-P, Yang H. Risk of adverse events with bevacizumab addition to therapy in advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials. Onco Targets Ther. 2016;9:2421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gridelli C, Maione P, Rossi A, De Marinis F. The role of bevacizumab in the treatment of non-small cell lung cancer: current indications and future developments. Oncologist. 2007;12:1183–93.

    Article  CAS  PubMed  Google Scholar 

  66. Spratlin J, Cohen R, Eadens M, Gore L, Camidge D, Diab S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1Monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28(5):780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fuchs C, Tomasek J, Yong C, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-esophageal junction adenocarcinoma (REGARD): an international, randomized multicenter, placebo-controlled, phase 3 trial. Lancet. 2014;383(9911):31–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cyramza (ramucirumab) [prescribing information]. Indianopolis, IN: Eli Lilly and Company. http://pi.lilly.com/us/cyramza-pi.pdf.

  69. Garon E, Ciuleanu T, Arrieta O, Prabhash K, Syrigos K, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomized phase 3 trial. Lancet. 2014;384(9944):665–73. https://doi.org/10.1016/S0140-6736(14)60845-X.

    Article  CAS  PubMed  Google Scholar 

  70. Reck M, Paz-Ares L, Bidoli P, Cappuzzo F, Dakhil S, Moro-Sibilot D, Borghaei H, Johnson M, Jotte R, Pennell NA, Shepherd FA, Tsao A, Thomas M, Carter GC, Chan-Diehl F, Alexandris E, et al. Outcomes in patients with aggressive or refractory disease from REVEL: a randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer. 2017;112:181–7. https://doi.org/10.1016/j.lungcan.2017.07.038.

    Article  PubMed  Google Scholar 

  71. Avastin (bevacizumab) [prescribing information]. Genentech. https://www.avastin-hcp.com.

  72. Wang ZP, Zhang HF, Zhang F, Hu BL, Wei HT, Guo YY. Bevacizumab did not reduce the risk of anemia associated with chemotherapy: an up-to-date meta-anlaysis. Eur J Clin Pharmacol. 2015;71(5):517–24. https://doi.org/10.1007/s00228-015-1818-y.

    Article  CAS  PubMed  Google Scholar 

  73. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0. June 2010. National Institutes of Health, National Cancer Institute. http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.

  74. Maitland M, Bakris G, Black H, Chen H, Durand J, Elliott W, Ivy S, Leier C, Lindenfeld J, Liu G, Remick S, Steingart R, Tang W. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. JNCI: J Natl Cancer Inst. 2010;102(9):596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grenon N. Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs. 2013;17(4):425–33.

    Article  PubMed  Google Scholar 

  76. Thompson K. Hemoptysis. Cancer Therapy Advisor. 2017. http://www.cancertherapyadvisor.com/hospital-medicine/hemoptysis/article/602521/. Accessed 10 Mar 2018.

  77. Damron B, Brant J, Belansky H, Friend P, Samsonow S, Schaal A. Putting evidence into practice. Clin J Oncol Nurs. 2009;13(5):573–83.

    Article  PubMed  Google Scholar 

  78. Rushing J. Managing epistaxis. Nurs Crit Care. 2011;6(2):48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Waxman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliver, M., Waxman, E.S. (2019). The Role of Anti-Angiogenic Agents (VEGF). In: Davies, M., Eaby-Sandy, B. (eds) Targeted Therapies in Lung Cancer: Management Strategies for Nurses and Practitioners. Springer, Cham. https://doi.org/10.1007/978-3-030-16550-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16550-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16549-9

  • Online ISBN: 978-3-030-16550-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics